科数网知识库
首页
目录
两角和与两角差03
日期:
2022-10-13 19:21
查看:
35
次
<p><strong>两角和与两角差公式</strong></p> <p>①<span class="math-tex">\( \sin (\alpha +\beta)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \) </span></p> <p>②<span class="math-tex">\( \sin (\alpha -\beta)=\sin \alpha \cos \beta -\cos \alpha \sin \beta \) </span></p> <p>③<span class="math-tex">\( \cos (\alpha +\beta)=\cos \alpha \cos \beta -\sin \alpha \sin \beta \) </span></p> <p>④<span class="math-tex">\( \cos (\alpha -\beta)=\cos \alpha \cos \beta +\sin \alpha \sin \beta \) </span></p> <p>⑤<span class="math-tex">\( \tan (\alpha +\beta)=\dfrac{\tan \alpha +\tan \beta}{1 -\tan \alpha \tan \beta} \) </span></p> <p>⑥<span class="math-tex">\( \tan (\alpha -\beta)=\dfrac{\tan \alpha - \tan \beta}{1 +\tan \alpha \tan \beta} \) </span></p> <p>⑦<span class="math-tex">\( \cot (\alpha +\beta)=\dfrac{\cot \alpha \cot \beta -1}{\cot \beta +\cot \alpha} \) </span></p> <p>⑧<span class="math-tex">\( \cot (\alpha -\beta)=\dfrac{\cot \alpha \cot \beta +1}{\cot \beta -\cot \alpha} \) </span></p> <p>⑨<span class="math-tex">\( \sec (\alpha +\beta)=\dfrac{\sec \alpha \sec \beta}{1 -\tan \alpha \tan \beta} \) </span></p> <p>⑩<span class="math-tex">\( \sec (\alpha -\beta)=\dfrac{\sec \alpha \sec \beta}{1 +\tan \alpha \tan \beta} \) </span></p> <p>⑪<span class="math-tex">\( \csc (\alpha +\beta)=\dfrac{\csc \alpha \csc \beta}{\cot \beta +\cot \alpha} \) </span></p> <p>⑫<span class="math-tex">\( \csc (\alpha -\beta)=\dfrac{\csc \alpha \csc \beta}{\cot \beta -\cot \alpha} \) </span></p> <p>下图给出了正弦与余弦角度变换公式。</p> <p><img src="../uploads/2022-10/f2babf.svg"></p> <p> </p> <p><strong>记忆方法</strong></p> <p>基本上记住正弦、余弦和正切公式,其它的可以实际使用时推导。</p> <p>例如由①,令<span class="math-tex">\( \beta \) </span>取<span class="math-tex">\( -\beta \) </span>,同时考虑<span class="math-tex">\( \cos \) </span>是偶函数,即可得到②。</p> <p> </p> <p>证明:<span class="math-tex">\( \sin (\alpha +\beta)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \) </span></p> <p><strong>证法一:</strong></p> <p>画一条水平线(即<span class="math-tex">\( x \) </span>轴);标记原点为<span class="math-tex">\( O \) </span>。从<span class="math-tex">\( O \) </span>以<span class="math-tex">\( OA \) </span>为始边画一个角度为<span class="math-tex">\( \alpha \) </span>的线,然后以<span class="math-tex">\( \alpha \) </span>为终边为始边画一个角度为<span class="math-tex">\( \beta \) </span>的线。</p> <p>则第二条线和<span class="math-tex">\( x \) </span>轴的夹角就是 <span class="math-tex">\( \alpha +\beta \) </span></p> <p>在<span class="math-tex">\( \beta \) </span> 的终点线段上取一点<span class="math-tex">\( P \) </span>,使得<span class="math-tex">\( |OP|=1 \) </span>,设<span class="math-tex">\( PQ \) </span>是一条垂直于<span class="math-tex">\( OQ \) </span>的线,<span class="math-tex">\( PB \) </span>垂直于<span class="math-tex">\( OA \) </span>于<span class="math-tex">\( B \) </span></p> <p><span class="math-tex">\( QR \) </span>垂直于<span class="math-tex">\( PB \) </span>于<span class="math-tex">\( R \) </span>,则</p> <p><span class="math-tex">\( \begin{aligned} &R P Q=\frac{\pi}{2}-R Q P= \\ &\frac{\pi}{2}-\left(\frac{\pi}{2}-R Q O\right)=R Q O=\alpha \\ &O P=1 \\ &P Q=\sin \beta \\ &O Q=\cos \beta \\ &\frac{A Q}{O Q}=\sin \alpha, \text { 所以 } A Q=\sin \alpha \cos \beta \\ &\frac{P R}{P Q}=\cos \alpha, \text { 所以} P R=\cos \alpha \sin \beta \\ &\sin (\alpha+\beta)=P B=R B+P R=A Q+P R=\\ &\sin \alpha \cos \beta+\cos \alpha \sin \beta \end{aligned} \) </span></p> <p>由此得到:</p> <p><span class="math-tex">\( \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \) </span> </p> <p>利用 <span class="math-tex">\( -\beta \) </span>替换<span class="math-tex">\( \beta \) </span> 同时考虑函数的奇偶性,可以得到:</p> <p><span class="math-tex">\( \sin (\alpha-\beta)=\sin \alpha \cos (-\beta)+\cos \alpha \sin (-\beta) \) </span> 即</p> <p><span class="math-tex">\( \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \) </span></p> <p><img src="../uploads/2022-10/5561b8.svg"></p> <p><strong>证明二</strong>:欧拉公式法。</p> <p>注意:由于欧拉公式的证明过程中使用了棣莫弗公式,而棣莫弗公式的证明过程中使用了和差化积公式,故使用欧拉公式证明和差化积会造成循环论证,故而下列方法仅为检验方法,而非严谨的证明方法。但是使用此方便特别容易记忆。</p> <p>欧拉公式指:<span class="math-tex">\( e^{i x}=\cos x+i \sin x \) </span></p> <p>令<span class="math-tex">\( x=\alpha \) </span>和<span class="math-tex">\( x=\beta \) </span> 则有:</p> <p><span class="math-tex">\( e^{i \alpha}=\cos \alpha+i \sin \alpha ...(1) \) </span></p> <p><span class="math-tex">\( e^{i \beta}=\cos \beta+i \sin \beta ...(2) \) </span></p> <p>令<span class="math-tex">\( x=\alpha+\beta \) </span>则有</p> <p><span class="math-tex">\( \begin{aligned} &e^{i(\alpha+\beta)}=\cos (\alpha+\beta)+i \sin (\alpha+\beta)=e^{i \alpha+i \beta}\\ &=e^{i \alpha} \times e^{i \beta}\\ &=(\cos \alpha+i \sin \alpha) \times(\cos \beta+i \sin \beta)\\ &=(\cos \alpha \times \cos \beta+i \sin \alpha \times i \sin \beta)+(i \sin \alpha \times \cos \beta+\cos \alpha \times i \sin \beta)\\ &=(\cos \alpha \cos \beta-\sin \alpha \sin \beta)+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta)\\ \end{aligned} \) </span></p> <p>实部等于实部,虚部等于虚部,因此</p> <p><span class="math-tex">\( \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \) </span></p> <p><span class="math-tex">\( \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \) </span></p> <p> </p> <p> </p> <p><strong>典型例题</strong></p> <p>求<span class="math-tex">\( \dfrac{\sin {47}º - \sin{17}º \cos 30º }{ \cos {17}º} \) </span></p> <p>解: <span class="math-tex">\( \sin47º=\sin{(30º+17º)} \) </span>,所以</p> <p>原式<span class="math-tex">\( =\dfrac{ \sin{(30º+17º)} - \sin{17}º \cos 30º }{ \cos {17}º} \) </span></p> <p>=<span class="math-tex">\( \dfrac{\sin 30º \cos {17}º}{ \cos {17}º} \) </span></p> <p><span class="math-tex">\( =\sin{30}º \) </span></p> <p>=<span class="math-tex">\( \dfrac{1}{2} \) </span></p> <p> </p> <p>求<span class="math-tex">\( \sin {15}º= \) </span></p> <p>解:<span class="math-tex">\( \sin 15^{\circ} =\sin \left(60^{\circ}-45^{\circ}\right) \) </span></p> <p><span class="math-tex">\( =\sin 60^{\circ} \cos 45^{\circ}-\cos 60^{\circ} \sin 45^{\circ} \) </span></p> <p><span class="math-tex">\( =\dfrac{(\sqrt{ 6}-\sqrt{2})}{4} \) </span></p>
本系统使用
启明星知识库Kbase
搭建,最后更新于
2022-10-13 19:21
,如果您有意见或建议请点击
反馈
。