科数网知识库
首页
目录
三角变换恒等式
日期:
2022-11-13 08:11
查看:
252
次
<p>三角函数包含了大量恒等式变形,本文给出了<span class="math-tex">\( \sin,\cos,\tan,\cot,\sec,\csc \) </span>,但是高考只要求记住<span class="math-tex">\( \sin,\cos,\tan \) </span>.</p> <p><strong>01.定义式</strong></p> <p>各个公式定义如下:</p> <p><img src="../uploads/2022-10/c43bef.jpg"></p> <p> </p> <p><strong>02.基本关系</strong></p> <p>下表列出了三角函数之间变化的关系,每一个函数都可以用另外5个函数表示。请注意</p> <p>(1)高考主要以正弦、余弦和正切为主。</p> <p>(2)每一个开方前面应该都有<span class="math-tex">\( \pm \) </span>号。</p> <p><span style="font-size: 10pt;"><strong><img src="../uploads/2022-10/b5f995.jpg"></strong></span></p> <p> </p> <p><strong>03. 诱导公式</strong></p> <p>诱导公式是指三角函数中,利用三角函数周期性的特点将角度比较大的三角函数转换为角度比较小的三角函数的公式。全国高考大纲中只考 <span class="math-tex">\( \sin, \cos, \tan \) </span>。</p> <p><span style="font-size: 12pt;"><img src="../uploads/2022-10/f794c1.jpg"></span></p> <p><span style="font-size: 10pt;"><strong><img src="../uploads/2022-10/34b22e.jpg"></strong></span></p> <p>在实际教学中,老师通常使用如下口诀让学生记忆:奇变偶不变,符号看象限”。 意思为,当k为奇数时,sin 变cos,cos变sin,tan变cot,cot变tan,sec变csc,csc变sec。当k为偶数时,三角函数则不变。对于正负号,要看最后角所在的象限。</p> <p> </p> <p><strong>04. 角的和差等式</strong></p> <p><strong><img src="../uploads/2022-10/a184ff.jpg"></strong></p> <p>注意上面正负号的对应,参考下图进行记忆。</p> <p><img src="../uploads/2022-10/f2babf.svg"></p> <p> </p> <p><strong>05.积化和差与和差化积</strong></p> <p><img src="../uploads/2022-10/dea2b0.jpg"></p> <p>下图给出了几何意义。</p> <p><img src="../uploads/2022-10/0af06d.svg" width="400px"></p> <p> </p> <p><strong>06.双倍角、三倍角和半角公式</strong></p> <p><img src="../uploads/2022-10/6082d7.jpg"></p> <p>参考下图解释了正弦2倍角的意义,方便记忆,根据面积相等可以推出(见下面证明)。</p> <p><img src="../uploads/2022-10/3f47bc.svg" width="380px"></p> <p> </p> <p> </p> <p> </p> <p><strong>07.降幂公式</strong></p> <p><img src="../uploads/2022-10/39d6a7.jpg"></p> <p>下图解释了cos,sina角度的意义。</p> <p><img src="../uploads/2022-10/1e4d2a.svg" width="250px"> <img src="../uploads/2022-10/5112d0.svg" width="250px"></p> <p> </p> <p><strong>09 辅助角公式</strong></p> <p><strong><img src="../uploads/2022-10/c16460.jpg"></strong></p> <p><strong>10.万能公式</strong></p> <p>万能公式的意思是任何一个函数,都可以使用 <span class="math-tex">\( \tan \dfrac{a}{2} \) </span> 表示</p> <p><strong><img src="../uploads/2022-10/2ccd27.jpg"></strong></p> <p> </p> <p><strong>11.反三角函数</strong></p> <p><img src="../uploads/2022-10/54623b.jpg"></p> <p> </p> <p>证明:<span class="math-tex">\( \sin (\alpha+\beta)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \) </span></p> <p><strong>证法一:</strong></p> <p>画一条水平线(即<span class="math-tex">\( x \) </span>轴);标记原点为<span class="math-tex">\( O \) </span>。从<span class="math-tex">\( O \) </span>以<span class="math-tex">\( OA \) </span>为始边画一个角度为<span class="math-tex">\( \alpha \) </span>的线,然后以<span class="math-tex">\( \alpha \) </span>为终边为始边画一个角度为<span class="math-tex">\( \beta \) </span>的线。</p> <p>则第二条线和<span class="math-tex">\( x \) </span>轴的夹角就是 <span class="math-tex">\( \alpha +\beta \) </span></p> <p>在<span class="math-tex">\( \beta \) </span> 的终点线段上取一点<span class="math-tex">\( P \) </span>,使得<span class="math-tex">\( |OP|=1 \) </span>,设<span class="math-tex">\( PQ \) </span>是一条垂直于<span class="math-tex">\( OQ \) </span>的线,<span class="math-tex">\( PB \) </span>垂直于<span class="math-tex">\( OA \) </span>于<span class="math-tex">\( B \) </span></p> <p><span class="math-tex">\( QR \) </span>垂直于<span class="math-tex">\( PB \) </span>于<span class="math-tex">\( R \) </span>,则</p> <p><span class="math-tex">\( \begin{aligned} &R P Q=\frac{\pi}{2}-R Q P= \\ &\frac{\pi}{2}-\left(\frac{\pi}{2}-R Q O\right)=R Q O=\alpha \\ &O P=1 \\ &P Q=\sin \beta \\ &O Q=\cos \beta \\ &\frac{A Q}{O Q}=\sin \alpha, \text { 所以 } A Q=\sin \alpha \cos \beta \\ &\frac{P R}{P Q}=\cos \alpha, \text { 所以} P R=\cos \alpha \sin \beta \\ &\sin (\alpha+\beta)=P B=R B+P R=A Q+P R=\\ &\sin \alpha \cos \beta+\cos \alpha \sin \beta \end{aligned} \) </span></p> <p>由此得到:</p> <p><span class="math-tex">\( \sin (\alpha+\beta)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \) </span> </p> <p>利用 <span class="math-tex">\( -\beta \) </span>替换<span class="math-tex">\( \beta \) </span> 同时考虑函数的奇偶性,可以得到:</p> <p><span class="math-tex">\( \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \) </span></p> <p><img src="../uploads/2022-10/5561b8.svg" width="300px"></p> <p> </p> <p><strong>证明二</strong>:欧拉公式法。</p> <p>注意:由于欧拉公式的证明过程中使用了棣莫弗公式,而棣莫弗公式的证明过程中使用了和差化积公式,故使用欧拉公式证明和差化积会造成循环论证,故而下列方法仅为检验方法,而非严谨的证明方法。但是使用此方便特别容易记忆。</p> <p>欧拉公式指:<span class="math-tex">\( e^{i x}=\cos x+i \sin x \) </span></p> <p>令<span class="math-tex">\( x=\alpha \) </span>和<span class="math-tex">\( x=\beta \) </span> 则有:</p> <p><span class="math-tex">\( e^{i \alpha}=\cos \alpha+i \sin \alpha ...(1) \) </span></p> <p><span class="math-tex">\( e^{i \beta}=\cos \beta+i \sin \beta ...(2) \) </span></p> <p>令<span class="math-tex">\( x=\alpha+\beta \) </span>则有</p> <p><span class="math-tex">\( \begin{aligned} &e^{i(\alpha+\beta)}=\cos (\alpha+\beta)+i \sin (\alpha+\beta)=e^{i \alpha+i \beta}\\ &=e^{i \alpha} \times e^{i \beta}\\ &=(\cos \alpha+i \sin \alpha) \times(\cos \beta+i \sin \beta)\\ &=(\cos \alpha \times \cos \beta+i \sin \alpha \times i \sin \beta)+(i \sin \alpha \times \cos \beta+\cos \alpha \times i \sin \beta)\\ &=(\cos \alpha \cos \beta-\sin \alpha \sin \beta)+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta)\\ \end{aligned} \) </span></p> <p>实部等于实部,虚部等于虚部,因此</p> <p><span class="math-tex">\( \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \) </span></p> <p><span class="math-tex">\( \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \) </span></p> <p> </p> <p><strong>典型例题</strong></p> <p>1.已知<span class="math-tex">\( \sin \theta= -\dfrac{4}{5} \) </span>,求<span class="math-tex">\( \sin \dfrac{\theta}{2} \) </span>,<span class="math-tex">\( \theta \) </span> 为第四象限的角。</p> <p>解:<span class="math-tex">\( \sin \theta= -\dfrac{4}{5} \) </span>, 所以 <span class="math-tex">\( \cos \theta= \dfrac{3}{5} \) </span>, 且<span class="math-tex">\( \dfrac{\theta}{2} \) </span>为第二或者第四象限的角</p> <p>所以 <span class="math-tex">\( \sin \dfrac{\theta}{2}=\pm \sqrt{\dfrac{1-\cos \theta}{2}} \) </span>=<span class="math-tex">\( \pm \dfrac{\sqrt{5}}{5} \) </span></p> <p> </p> <p> </p> <p>2.证明:<span class="math-tex">\( \sin 2 \theta =2 \sin \theta \cos \theta \) </span></p> <p>证:根据 <a href="../kbase/lists.aspx?kid=42" target="_blank" rel="noopener">两角和与两角差</a>恒等式,有</p> <p><span class="math-tex">\( \sin (\alpha +\beta)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \) </span></p> <p>令<span class="math-tex">\( \alpha=\beta \) </span>, 则有 <span class="math-tex">\( \sin 2 \theta =2 \sin \theta \cos \theta \) </span></p> <p><img src="../uploads/2022-10/fc0bdd.jpg" width="350px"></p> <p>上图解释了2倍角公式的几何意义。在左图中,三角形的面积为</p> <p><span class="math-tex">\( S_1=\dfrac{1}{2} (sin \theta + sin \theta) * \cos \theta =\sin \theta cos \theta \) </span></p> <p>将此三角形旋转180度,则有三角形面积为</p> <p><span class="math-tex">\( S_2=\dfrac{1}{2} *1 * \sin {2\theta} \) </span>=<span class="math-tex">\( \dfrac{1}{2} \sin {2\theta} \) </span></p> <p>因为 <span class="math-tex">\( S_1=S_2 \) </span></p> <p>所以 <span class="math-tex">\( \sin \theta cos \theta = \dfrac{1}{2} \sin {2\theta} \) </span> 即</p> <p><span class="math-tex">\( \sin 2 \theta =2 \sin \theta \cos \theta \) </span></p> <p> </p> <p>3.已知 <span class="math-tex">\( \tan 2 x=-2 \sqrt{2} \quad \pi<2 x<2 \pi \) </span>,求 <span class="math-tex">\( \dfrac{2 \cos ^2 \dfrac{x}{2}-\sin x-1}{\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)} \) </span></p> <p>解:<span class="math-tex">\( \tan 2x=\dfrac{2 \tan x}{1-\tan^2x} =-\sqrt{2} \) </span></p> <p><span class="math-tex">\( \therefore \sqrt{2} {\tan^2 x- 2\tan x}- \sqrt{2}=0 \) </span></p> <p><span class="math-tex">\( \therefore \tan x=\sqrt{2} \) </span> 或 <span class="math-tex">\( \tan x=-\dfrac{\sqrt{2}}{2} \) </span></p> <p><span class="math-tex">\( \because \dfrac{\pi}{2}< x < \pi \) </span> </p> <p><span class="math-tex">\( \therefore \tan x <0 \) </span></p> <p><span class="math-tex">\( \therefore \quad \tan x=-\frac{\sqrt{2}}{2} \) </span></p> <p>原式<span class="math-tex">\( =\dfrac{\cos x-\sin x}{\sin x+\cos x} \) </span>,分子分母同除以<span class="math-tex">\( \cos x \) </span></p> <p><span class="math-tex">\( =\dfrac{1-\tan x}{1+\tan x}=\dfrac{1+\dfrac{\sqrt{2}}{2}}{1-\dfrac{\sqrt{2}}{2}}=3+2 \sqrt{2} \) </span></p> <p>4.求<span class="math-tex">\( \dfrac{\sin {47}º - \sin{17}º \cos 30º }{ \cos {17}º} \) </span></p> <p>解: <span class="math-tex">\( \sin47º=\sin{(30º+17º)} \) </span>,所以</p> <p>原式<span class="math-tex">\( =\dfrac{ \sin{(30º+17º)} - \sin{17}º \cos 30º }{ \cos {17}º} \) </span></p> <p>=<span class="math-tex">\( \dfrac{\sin 30º \cos {17}º}{ \cos {17}º} \) </span></p> <p><span class="math-tex">\( =\sin{30}º \) </span></p> <p>=<span class="math-tex">\( \dfrac{1}{2} \) </span></p> <p> </p> <p>5.求<span class="math-tex">\( \sin {15}º= \) </span></p> <p>解:<span class="math-tex">\( \sin 15^{\circ} =\sin \left(60^{\circ}-45^{\circ}\right) \) </span></p> <p><span class="math-tex">\( =\sin 60^{\circ} \cos 45^{\circ}-\cos 60^{\circ} \sin 45^{\circ} \) </span></p> <p><span class="math-tex">\( =\dfrac{(\sqrt{ 6}-\sqrt{2})}{4} \) </span></p> <p> </p>
本系统使用
启明星知识库Kbase
搭建,最后更新于
2022-11-13 08:11
,如果您有意见或建议请点击
反馈
。