科数网知识库
首页
目录
知识库
高中数学(高考专区)
数学归纳法
数列
数学归纳法
日期:
2023-10-10 08:32
查看:
82
次
更新
导出Word
数学归纳法 是一种证明与自然数相关的定理的方法,它与自然数集合的良序公理等价, 且被列入如 Peano 公理等一些和自然数相关的公理当中。数学归纳法有以下几种形式,以下皆假设 $P(m)$ 是一个与自 然数相关 (以下将与定理相关的自然数设做 $m$ ) 的命题。 一般地,证明一个与正整数 $n$ 有关的数学命题,可按如下两个步骤进行: (1) (归纳奠基) 证明当 $n=n_0 \quad\left(n_0 \in N^*\right)$ 时命题成立; (2) (归纳递推) 假设当 $\left.n=k ( k \in N^* , k \geq n_0\right)$ 时命题成立,证明当 $n=k+1$ 时命题也成立。 根据 (1)(2)就可以断定命题对于从 $n_0$ 开始的所有正整数 $n$ 都成立。上述证明方法叫作数学归 纳法。 用数学归纺法证明关键在于“两个步骤要做到,递推基础不可少,归纳假设要用到,结论写明莫忘掉” **例题1:请证明** $$ 1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}< 2-\frac{1}{n} \quad(n \geqslant 2) . $$ 证明:(数学归纳法) ① 当 $n=2$ 时, $1+\frac{1}{2^2}=\frac{5}{4}<2-\frac{1}{2}=\frac{3}{2}$, 命题成立. ② 假设 $n=k$ 的命透成立, 即 $1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{k^2}<2$ $-\frac{1}{k}$ $$ \begin{aligned} & \quad \text { 当 } n=k+1 \text { 时, } 1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{k^2}+\frac{1}{(k+1)^2}< \\ & 2-\frac{1}{k}+\frac{1}{(k+1)^2}<2-\frac{1}{k}+\frac{1}{k(k+1)}=2-\frac{1}{k}+\frac{1}{k}-\frac{1}{k+1} \\ & =2-\frac{1}{k+1} \text { 命题成立. } \end{aligned} $$ 由 ① ② 可以证明原命题成立。 注意:数学归纳法的实质在于递推,所以从 " $k$ “到 “ $k+1$ " 的过程,必须把归纳假设" $n=k$ " 作 为条件来导出 “ $n=k+1$ " 时的命题,在推导过程中,要把归纳假设用上一次或几次。
上一篇:
等比数列
下一篇:
反证法
知识库是科数网倾心打造的大型数学知识网站,欢迎各位老师、数学爱好者加入,联系微信 18155261033, 制作不易,也欢迎
赞助
本站。