科数网知识库
首页
目录
知识库
高等数学[教程类] Calculus(考研专区)
第六章 多元函数微分学
全微分形式的不变性
全微分形式的不变性
日期:
2023-10-01 11:28
查看:
38
次
更新
导出Word
设函数 $z=f(u, v)$ 可微, 则有 $\mathrm{d} z=\frac{\partial z}{\partial u} \mathrm{~d} u+\frac{\partial z}{\partial v} \mathrm{~d} v$ ; 如果 $u=\varphi(x, y) , v=\psi(x, y)$ 可微,则 $z=f(u(x, y), v(x, y))=f(x, y)$ 也可微,则 $$ \mathrm{d} z=\frac{\partial z}{\partial x} \mathrm{~d} x+\frac{\partial z}{\partial y} \mathrm{~d} y \text {, } $$ $$ \begin{gathered} \text { 由 }\left\{\begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array}\right. \text { ,知 } \\ \mathrm{d} z=\left(\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}\right) \mathrm{d} x+\left(\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}\right) \mathrm{d} y \\ =\frac{\partial z}{\partial u}\left(\frac{\partial u}{\partial x} \mathrm{~d} x+\frac{\partial u}{\partial y} \mathrm{~d} y\right)+\frac{\partial z}{\partial v}\left(\frac{\partial v}{\partial x} \mathrm{~d} x+\frac{\partial v}{\partial y} \mathrm{~d} y\right)=\frac{\partial z}{\partial u} \mathrm{~d} u+\frac{\partial z}{\partial v} \mathrm{~d} v \end{gathered} $$ 可以看出,无论 $z$ 是自变量 $u 、 v$ 的函数,还是中间变量 $u 、 v$ 的函数,它 的全微分形式是一样的,这个性质就叫做全微分形式的不变性. 例 10 设 $z=(x-y)^{x^2+y^2}$ ,求 $\frac{\partial z}{\partial x} , \frac{\partial z}{\partial y}$. 解 $z=(x-y)^{x^2+y^2}=u^v$ , $$ \mathrm{d} z=\mathrm{d} u^v=\frac{\partial}{\partial u}\left(u^v\right) \mathrm{d} u+\frac{\partial}{\partial v}\left(u^v\right) \mathrm{d} v=v u^{v-1} \mathrm{~d} u+u^v \ln u \mathrm{~d} v , $$ $$ \mathrm{d} u=\mathrm{d}(x-y)=\mathrm{d} x-\mathrm{d} y, \quad \mathrm{~d} v=\mathrm{d}\left(x^2+y^2\right)=2 x \mathrm{~d} x+2 y \mathrm{~d} y $$ 例 10 设 $z=(x-y)^{x^2+y^2}$ ,求 $\frac{\partial z}{\partial x} , \frac{\partial z}{\partial y}$. $$ \mathrm{d} z=v u^{v-1} \mathrm{~d} u+u^v \ln u \mathrm{~d} v , \quad \mathrm{~d} u=\mathrm{d} x-\mathrm{d} y , \quad \mathrm{~d} v=2 x \mathrm{~d} x+2 y \mathrm{~d} y , $$ 代入并归并含 $\mathrm{d} x$ 及 $\mathrm{d} y$ 的项,得 $$ \mathrm{d} u=(x-y)^{x^2+y^2}\left[\left(2 x \ln (x-y)+\frac{x^2+y^2}{x-y}\right) \mathrm{d} x+\left(2 y \ln (x-y)-\frac{x^2+y^2}{x-y}\right) \mathrm{d} y\right], $$ 故 $\frac{\partial u}{\partial x}=(x-y)^{x^2+y^2}\left(2 x \ln (x-y)+\frac{x^2+y^2}{x-y}\right)$ , $$ \frac{\partial u}{\partial y}=(x-y)^{x^2+y^2}\left(2 y \ln (x-y)-\frac{x^2+y^2}{x-y}\right) . $$
上一篇:
复合函数的中间变量为多元函数的情形
下一篇:
隐函数的求导公式
知识库是科数网倾心打造的大型数学知识网站,欢迎各位老师、数学爱好者加入,联系微信 18155261033, 制作不易,也欢迎
赞助
本站。