科数网知识库
首页
目录
知识库
线性代数[教程类] Linear Algebra (考研专区)
第三篇 向量空间与线性方程组解
向量空间的基、维数与坐标
向量空间的基、维数与坐标
日期:
2023-10-01 11:28
查看:
50
次
更新
导出Word
定义 4 向量空间 $V$ 中的 $r$ 个向量 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 如果满足下列条件: $1 \alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关; 2 向量空间 $V$ 中任一向量都可以由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示,则称 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 为向量空间 $V$ 的一个基. 数 $r$ 称为向量空间的维数,记为 $\operatorname{dim}(V)=r$ ,并称 $V$ 为 $r$ 维向量空间. 向量空间 $V$ 如果只含有一个零向量,则这个向量空间没有基,它的维数为 0 .   命题 1 如果 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是向量空间 $V$ 的一个基,则 $V$ 中任一向量 $\beta$ 均可以由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 唯一线性表示. 证明 由基的定义可知, $V$ 中任一向量 $\beta$ 均可以由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示. 下面证明表示式是唯一的. 设存在数 $\lambda_1, \lambda_2, \cdots, \lambda_r$ 及 $\mu_1, \mu_2, \cdots, \mu_r$ , 使得 $\boldsymbol{\beta}=\lambda_1 \boldsymbol{\alpha}_1+\lambda_2 \boldsymbol{\alpha}_2+\cdots+\lambda_r \boldsymbol{\alpha}$. 以及 $\boldsymbol{\beta}=\mu_1 \boldsymbol{\alpha}_1+\mu_2 \boldsymbol{\alpha}_2+\cdots+\mu_r \boldsymbol{\alpha}_r$, 两式相减得 $\quad \mathbf{0}=\left(\lambda_1-\mu_1\right) \boldsymbol{\alpha}_1+\left(\lambda_2-\mu_2\right) \boldsymbol{\alpha}_2+\cdots+\left(\lambda_r-\mu_r\right) \boldsymbol{\alpha}_r$. 由基 $\alpha_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r$ 线性无关可得 $\lambda_1=\mu_1, \lambda_2=\mu_2, \cdots, \lambda_r=\mu_r$, 因此向量 $\beta$ 可由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 唯一的线性表示. 定义 5 设 $\alpha, \alpha_2, \cdots, \alpha$, 是向量空间 $V$ 的一个基,如果 $V$ 中任一向量 $\beta$ 可唯一线性表示为 $$ \boldsymbol{\beta}=\lambda_1 \boldsymbol{\alpha}_1+\lambda_2 \boldsymbol{\alpha}_2+\cdots+\lambda_r \boldsymbol{\alpha}, $$ 则称常数 $\lambda_1, \lambda_2, \cdots, \lambda_r$ 为向量 $\beta$ 在基 $\alpha_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r$ 下的坐标. 取 $\mathbf{R}^n$ 的一个基为 $e_1, e_2, \cdots, e_n$ ,则 $\mathbf{R}^n$ 中任一向量 $$ \boldsymbol{\alpha}=\left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array}\right) $$ 在基 $\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n$ 下的坐标就是向量 $\boldsymbol{\alpha}$ 的 $n$ 个分量 $a_1, a_2, \cdots, a_n$. 
上一篇:
向量空间及其子空间
下一篇:
基变换与坐标变换
知识库是科数网倾心打造的大型数学知识网站,欢迎各位老师、数学爱好者加入,联系微信 18155261033, 制作不易,也欢迎
赞助
本站。