在线学习
重点科目
初中数学
高中数学
高等数学
线性代数
概率统计
高中物理
数学公式
主要科目
复变函数
离散数学
数学分析
实变函数
群论
数论
未整理科目
近世代数
数值分析
常微分方程
偏微分方程
大学物理
射影几何
微分几何
泛函分析
拓扑学
数学物理
趣味数学
科数网
题库
教材
高考区
考研区
VIP
科数网
题库
在线学习
高中数学
高等数学
线性代数
概率统计
高中物理
复变函数
离散数学
实变函数
数论
群论
你好
游客,
登录
注册
在线学习
高中物理
第十五章 原子结构与波粒二象性
爱因斯坦的光电效应理论
最后
更新:
2024-01-09 08:42
查看:
347
次
反馈
刷题
爱因斯坦的光电效应理论
对于光电效应的解释, 爱因斯坦是在普朗克量子假说的基础上作出的。在这个假说的启发下, 爱因斯坦在 1905 年发表了题为 《关于光的产生和转化的一个试探性观点》的文章。他表示, 普朗克关于黑体辐射问题的崭新观点还不够彻底, 仅仅认为振动着的带电微粒的能量不连续是不够的。为了解释光电效应, 必须假定电磁波本身的能量也是不连续的, 即认为光本身就是由一个个不可分割的能量子组成的, 频率为 $v$ 的光的能量子为 $h v$, 其中, $h$ 为普朗克常量。这些能量子后来称为光子。 按照爱因斯坦的理论 (图4.2-3), 当光子照到金属上时, 它的能量可以被金属中的某个电子全部吸收, 金属中的电子吸收一个光子获得的能量是 $h v$, 在这些能量中, 一部分大小为 $W_0$ 的能量被电子用来脱离金属, 剩下的是逸出后电子的初动能, 即  $$ h v=E_{\mathrm{k}}+W_0 $$ 或 $$ E_{\mathrm{k}}=h v-W_0 $$ 式中 $E_{\mathrm{k}}$ 为光电子的最大初动能 $$ E_{\mathrm{k}}=\frac{1}{2} m_{\mathrm{e}} v_{\mathrm{c}}{ }^2 $$ (1) 式称为爱因斯坦光电效应方程。 从下面的讨论可以看出, 爱因斯坦光电效应方程可以很好地解释光电效应实验中的各种现象。 - 这个方程表明, 只有当 $h v>W_0$ 时, 光电子才可以从金属中逸出, $v_{\mathrm{c}}=\frac{W_0}{h}$ 就是光电效应的截止频率 (图 $4.2-4$ )。 - 这个方程还表明, 光电子的最大初动能 $E_{\mathrm{k}}$ 与人射光的频率 $v$ 有关, 而与光的强弱无关。这就解释了截止电压和光强无关。 - 电子一次性吸收光子的全部能量, 不需要积累能量的时间, 光电流自然几乎是瞬时产生的。 - 对于同种频率的光, 光较强时, 单位时间内照射到金属表面的光子数较多, 照射金属时产生的光电子较多,因而饱和电流较大。 利用光电子的初动能 $E_{\mathrm{k}}=e U_{\mathrm{c}}$ 和爱因斯坦光电效应方程 $E_{\mathrm{k}}=h v-W_0$, 可以消去 $E_{\mathrm{k}}$, 从而得到 $U_{\mathrm{c}}$ 与 $v 、 W_0$ 的关系, 即 $$ U_{\mathrm{c}}=\frac{h}{e} v-\frac{W_0}{e} $$ 对于确定的金属, 其逸出功 $W_0$ 是确定的, 电子电荷 $e$ 和普朗克常量 $h$ 都是常量。上式中的截止电压 $U_{\mathrm{c}}$ 与光的频率 $v$ 之间是线性关系, $U_{\mathrm{c}}-v$ 图像是一条斜率为 $\frac{h}{e}$ 的直线 (图4.2-5)。  从 1907 年起, 美国物理学家密立根开始以精湛的技术测量光电效应中几个重要的物理量。他的目的是:测量金属的截止电压 $U_{\mathrm{c}}$ 与人射光的频率 $v$, 由此算出普朗克常量 $h$, 并与普朗克根据黑体辐射得出的 $h$ 相比较, 以检验爱因斯坦光电效应方程的正确性。 实验的结果是, 两种方法得出的普朗克常量 $h$ 在 $0.5 \%$的误差范围内是一致的。这为爱因斯坦的光电效应理论提供了直接的实验证据。 爱因斯坦由于提出了光电效应理论而获得 1921 年的诺贝尔物理学奖。
刷题
做题,是检验是否掌握数学的唯一真理
上一篇:
康普顿效应和光子的动量
下一篇:
黑体辐射及实验规律
本文对您是否有用?
有用
(
0
)
无用
(
0
)
纠错
高考
考研
关于
赞助
公式
科数网是专业专业的数学网站。