切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
高中物理
第十一章 电磁感应与交流电
动量定理在电磁感应中的应用
最后
更新:
2024-12-19 11:36
查看:
152
次
反馈
能力测评
会员8.2元/月
赞助
动量定理在电磁感应中的应用
导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解. “单棒+电阻”模型   `例`水平面上放置两个互相平行的足够长的金属导轨,间距为d,电阻不计,其左端连接一阻值为R的电阻.导轨处于方向竖直向下的匀强磁场中,磁感应强度大小为B.质量为m、长度为d、阻值为R与导轨接触良好的导体棒MN以速度v0垂直导轨水平向右运动直到停下.不计一切摩擦,则下列说法正确的是 A.导体棒运动过程中所受安培力先做正功再做负功 B. 导体棒在导轨上运动的最大距离为 $\frac{2 m v_0 R}{B^2 d^2}$ C. 整个过程中,电阻 $R$ 上产生的焦耳热为 $\frac{1}{2} m v_0{ }^2$ D. 整个过程中, 导体棒的平均速度大于 $\frac{v_0}{2}$  解:导体棒向右运动过程中一直受到向左的安培力作用,即安培力一直做负功,故A错误; 由动量定理可知 $-\bar{I} d B \cdot \Delta t=0-m v_0$, 其中 $\bar{I} \cdot \Delta t=\frac{\frac{\Delta \Phi}{\Delta t}}{2 R} \cdot \Delta t=\frac{\Delta \Phi}{2 R}, \Delta \Phi=B d x$,解得 $x=\frac{2 m v_0 R}{B^2 d^2}$, 故 B 正确; 导体棒的阻值与左端所接电阻的阻值相等, 故电阻 $R$ 上产生的焦耳热应该为 $\frac{1}{4} m v_0{ }^2$, 故 C 错误; 根据 $a=\frac{B I d}{m}=\frac{B^2 d^2 v}{2 R m}$ 可知, 导体棒做的是加速度逐渐减小的减速运动,故其平均速度将小于做匀减速运动的平均速度, 即小于 $\frac{v_0}{2}$, 故 D 错误. `例`如图所示,M、N、P、Q四条光滑的足够长的金属导轨平行放置,导轨间距分别为2L和L,两组导轨间由导线相连,装置置于水平面内,导轨间存在方向竖直向下的、磁感应强度大小为B的匀强磁场,两根质量均为m、接入电路的电阻均为R的导体棒C、D分别垂直于导轨放置,且均处于静止状态,其余部分电阻不计.t=0 时使导体棒C获得瞬时速度v0向右运动,两导体棒在运动过程中始终与导轨垂直并与导轨接触良好.且达到稳定运动时导体棒C未到两组导轨连接处.  则下列说法正确的是 A. $t=0$ 时, 导体
开通会员 查看余下70%
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
电磁感应中的能量问题
下一篇:
动量守恒定律在电磁感应中的应用
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com