科数网
首页
题库
试卷
学习
VIP
你好
游客,
登录
注册
在线学习
偏微分方程
拉普拉斯算子
最后
更新:
2025-04-10 06:45
查看:
37
次
反馈
同步训练
拉普拉斯算子
拉普拉斯算子
## 拉普拉斯算子 函数 $u$ 的梯度为 $\nabla u$ ,如果再求 $\nabla u$ 的散度,便成为 $\nabla \cdot(\nabla u) \equiv \nabla^2 u$ ,它是拉普拉斯算子 $\nabla^2$ 对 $u$ 的运算,简称拉普拉斯(Laplacian)。在偏微分方程中,$\nabla^2 u$ 扮演着十分重要的角色,特别是,我们在数学物理方法中将要讨论如下方程 $$ \begin{gathered} \nabla^2 u=0 \quad \text { (拉普拉斯方程) } \\ \nabla^2 u+k^2 u=0 \quad \text { (亥姆霍兹方程) } \\ \frac{\partial^2 u}{\partial t^2}=a^2 \nabla^2 u \quad \text { (波动方程) } \\ \frac{\partial u}{\partial t}=a^2 \nabla^2 u \quad \text { (热传导方程) } \\ i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^2}{2 m} \nabla^2 \psi+V(r) \psi \quad \text { (薛定谔方程) } \end{gathered} $$ 在这些方程中,$\nabla^2$ 可以是三维形式,也可以是二维形式 $$ \nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} $$ ## 极坐标系下的拉普拉斯算子 极坐标系如图所示,它与直角坐标系的关系为 {width=300px} $$ x=r \cos \theta, \quad y=r \sin \theta $$ 而 $$ r^2=x^2+y^2, \quad \tan \theta=\frac{y}{x} $$ 利用 $r^2=x^2+y^2$ 计算 $r$ 对 $x$ 的微商,得到 $$ 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} $$ 再次对 $x$ 微商,得到 $$ \frac{\partial^2 r}{\partial x^2}=\frac{r-x \frac{\partial r}{\partial x}}{r^2}=\frac{r-x \frac{x}{r}}{r^2}=\frac{r^2-x^2}{r^3}=\frac{y^2}{r^3} $$ 利用 $\tan \theta=\frac{y}{x}$ 计算 $\theta$ 对 $x$ 的微商,得到 $$ \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2}\left(-\frac{y}{x^2}\right)=-\frac{y}{r^2} $$ 再次对 $\theta$ 微商得 $$ \frac{\partial^2 \theta}{\partial x^2}=\frac{2 y}{r^3} \frac{\partial r}{\partial x}=\frac{2 x y}{r^4} $$ 现在对 $y$ 微分,按照类似的过程,我们得到 $$ \frac{\partial r}{\partial y}=\frac{y}{r}, \quad \frac{\partial^2 r}{\partial y^2}=\frac{x^2}{r^3}, \quad \frac{\partial \theta}{\partial y}=\frac{x}{r^2}, \quad \frac{\partial^2 \theta}{\partial y^2}=-\frac{2 x y}{r^4} $$ 从以上结果,容易推出下面两个关系式 $$ \begin{gathered} \frac{\partial^2 \theta}{\partial x^2}+\frac{\partial^2 \theta}{\partial y^2}=0 \\ \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}=0 \end{gathered} $$ 现在我们可以着手将拉普拉斯算子变换到极坐标系。利用复合函数的微分法则,我们有 $$ \frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x} $$ 再次对 $x$ 微商得 $$ \begin{aligned} \frac{\partial^2 u}{\partial x^2}= & \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial r}\right) \frac{\partial r}{\partial x}+\frac{\partial u}{\partial r} \frac{\partial^2 r}{\partial x^2}+\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial \theta}\right) \frac{\partial \theta}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial^2 \theta}{\partial x^2} \\ = & \left(\frac{\partial^2 u}{\partial r^2} \frac{\partial r}{\partial x}+\frac{\partial^2 u}{\partial r \partial \theta} \frac{\partial \theta}{\partial x}\right) \frac{\partial r}{\partial x}+\frac{\partial u}{\partial r} \frac{\partial^2 r}{\partial x^2} \\ & +\left(\frac{\partial^2 u}{\partial r \partial \theta} \frac{\partial r}{\partial x}+\frac{\partial^2 u}{\partial \theta^2} \frac{\partial \theta}{\partial x}\right) \frac{\partial \theta}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial^2 \theta}{\partial x^2} \\ = & \frac{\partial^2 u}{\partial r^2}\left(\frac{\partial r}{\partial x}\right)^2+2 \frac{\partial^2 u}{\partial r \partial \theta} \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial u}{\partial r} \frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 u}{\partial \theta^2}\left(\frac{\partial \theta}{\partial x}\right)^2+\frac{\partial u}{\partial \theta} \frac{\partial^2 \theta}{\partial x^2} \end{aligned} $$ 对于 $y$ 有同样的结果 $$ \frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial r^2}\left(\frac{\partial r}{\partial y}\right)^2+2 \frac{\partial^2 u}{\partial r \partial \theta} \frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}+\frac{\partial u}{\partial r} \frac{\partial^2 r}{\partial y^2}+\frac{\partial^2 u}{\partial \theta^2}\left(\frac{\partial \theta}{\partial y}\right)^2+\frac{\partial u}{\partial \theta} \frac{\partial^2 \theta}{\partial y^2} $$ 将式(1.2.26)与式(1.2.27)相加并注意式(1.2.23)和式(1.2.24),我们得到 $$ \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial r^2}\left[\left(\frac{\partial r}{\partial x}\right)^2+\left(\frac{\partial r}{\partial y}\right)^2\right]+2 \frac{\partial^2 u}{\partial r \partial \theta}\left[\frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}\right] $$ $$ \begin{aligned} & +\frac{\partial u}{\partial r}\left[\frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 r}{\partial y^2}\right]+\frac{\partial^2 u}{\partial \theta^2}\left[\left(\frac{\partial \theta}{\partial x}\right)^2+\left(\frac{\partial \theta}{\partial y}\right)^2\right]+\frac{\partial u}{\partial \theta}\left[\frac{\partial^2 \theta}{\partial x^2}+\frac{\partial^2 \theta}{\partial y^2}\right] \\ = & \frac{\partial^2 u}{\partial r^2}\left[\left(\frac{\partial r}{\partial x}\right)^2+\left(\frac{\partial r}{\partial y}\right)^2\right]+\frac{\partial u}{\partial r}\left[\frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 r}{\partial y^2}\right] \\ & +\frac{\partial^2 u}{\partial \theta^2}\left[\left(\frac{\partial \theta}{\partial x}\right)^2+\left(\frac{\partial \theta}{\partial y}\right)^2\right] \end{aligned} ...(1.2.28) $$ 进一步利用式(1.2.20)~式(1.2.22),则式(1.2.28)变为 $$ \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial r^2}\left(\frac{x^2}{r^2}+\frac{y^2}{r^2}\right)+\frac{\partial u}{\partial r}\left(\frac{x^2}{r^3}+\frac{y^2}{r^3}\right)+\frac{\partial^2 u}{\partial \theta^2}\left(\frac{x^2}{r^4}+\frac{y^2}{r^4}\right) $$ 利用 $r^2=x^2+y^2$ ,我们得到极坐标系中的拉普拉斯 $$ \nabla^2 u=\frac{\partial^2 u}{\partial r^2}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} $$ 它还可以写为更加简洁的形式 $$ \boxed{ \nabla^2 u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\part
其他版本
【高等数学】理解:旋度
免费注册看余下 50%
非VIP会员每天15篇文章,开通VIP 无限制查看
上一篇:
哈密顿算子
下一篇:
贝塞尔函数
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
题库下载
会议预约系统
数学公式
关于
科数网是专业专业的数学网站 版权所有 本站部分教程采用AI辅助生成,请学习时自行鉴别
如果页面无法显示请联系 18155261033 或 983506039@qq.com