切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
高中数学
第七章 平面向量与空间向量
向量、模、单位向量
最后
更新:
2025-12-04 05:32
查看:
734
次
反馈
能力测评
会员8.2元/月
赞助
向量、模、单位向量
在常用的数量问题中,我们用数去表达各种量,如重量、长度、面积、体积、密度等等;用加、减、乘、除运算的组合去表达各种量之间的关系(通称代数通性).在代数中,我们已掌握了数系的基本性质(即交换律、结合律和分配律).并熟知了代数学的基本精神在于有效地运用数系通性,对于各种类型的代数问题谋求通解(即以通性求通解).现在我们要着手把几何学的讨论也推进到定量的层面,设法把空间结构有系统地代数化,数量化,这也就是本章所要详加讨论的课题——向量与向量运算. > 向量在现代数学体系里,越来越重要,从三角函数、复数、立体几何到线性代数里的向量空间、人工智能等,都离不开对向量的研究,可以说,**向量已经成为数学基础中的基础**。 ## 向量的基本概念 我们在物理学中已经学过速度的有关知识, 知道表征速度需要两个参数:(1)速度的大小。(2)速度的方向。 既有大小又有方向的量我们称为**向量** (也称为矢量),与此相对,只有大小没有方向的量叫做“**标量**”。 物理中,速度,力,位移都是向量,而质量,长度,电阻都是标量。 对应向量的大小也称为向量的**模** (也可以叫向量长度); > 对于同一个意义的名词,数学和物理有时候会采用不同的叫法。在数学里,把向量叫做向量,但是在物理里,叫做**矢量**,虽然名称不同,但是意义一样。 下图下述了一个简单的向量$\vec{OA}$. {width=250px} 我们知道, 位移可以用带箭头的线段 (即有向线段) 来直观地表示. 类似地, 我们也用有向线段来直观地表示向量, 其中有向线段的长度表示向量的大小, 有向线段箭头所指的方向表示向量的方向. 而且, 通常将有向线段不带箭头的端点称为向量的**始点** (或起点), 带箭头的端点称为向量的**终点**. ### 向量的表示 有向线段始点和终点的相对位置确定向量的大小与方向. 始点为 $A$ 终点为 $B$ 的有向线段表示的向量, 可以用符号简记为 $\overrightarrow{A B}$, 此时向量的模用 $|\overrightarrow{A B}|$ 表示. 除了用始点和终点的两个大写字母来表示向量外, 还可用一个小写字母来表示向量: 在印刷时, 通常用加粗的斜体小写字母如 $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ 等来表示向量 ; 在书写时, 用带箭头的小写字母如 $\vec{a}, \vec{b}, \vec{c}$ 等来表示向量. 此时, 向量 $\boldsymbol{a}$ 的模也用 $|\boldsymbol{a}|$ 或 $|\vec{a}|$ 来表示. ### 相反向量 向量$\overrightarrow{A B}$ 与 $\overrightarrow{B A}$ 虽然长度相等, 但方向相反, 因此 $\overrightarrow{A B} \neq \overrightarrow{B A}$. 类似于相反数的定义,我们把长度相等、方向相反的向量 $a , b$ 称为相反向量,记作 $b =- a$ 。如果 $b =- a$, 则同样也有 $a =- b$. ### 零向量 始点和终点相同的向量称为**零向量**. 零向量在印刷时, 通常用加粗的阿拉伯
免费注册 查看余下70%
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
没有了
下一篇:
向量加法、减法与平行四边形和三角形法则
本文对您是否有用?
有用
(
0
)
无用
(
0
)
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com