在线学习
重点科目
初中数学
高中数学
高等数学
线性代数
概率统计
高中物理
数学公式
主要科目
复变函数
离散数学
数学分析
实变函数
群论
数论
未整理科目
近世代数
数值分析
常微分方程
偏微分方程
大学物理
射影几何
微分几何
泛函分析
拓扑学
数学物理
趣味数学
科数网
题库
教材
高考区
考研区
VIP
科数网
题库
在线学习
高中数学
高等数学
线性代数
概率统计
高中物理
复变函数
离散数学
实变函数
数论
群论
你好
游客,
登录
注册
在线学习
高中物理
第十五章 原子结构与波粒二象性
光谱
最后
更新:
2024-01-09 08:45
查看:
208
次
反馈
刷题
光谱
用棱镜或光栅可以把物质发出的光按波长 (频率)展开,获得波长 (频率) 和强度分布的记录 (图 4.4-1), 即光谱。有些光谱是一条条的亮线, 叫作谱线, 这样的光谱叫作线状谱。有的光谱看起来不是一条条分立的谱线, 而是连在一起的光带, 叫作连续谱。图 4.4-2 中最上一条是连续谱,其他几条则既有线状分立谱又有连续谱。  气体中中性原子的发光光谱都是线状谱, 说明原子只发出几种特定频率的光。不同原子的亮线位置不同, 说明不同原子的发光频率是不一样的, 因此, 这些亮线称为原子的特征谱线。  1885 年, 瑞士科学家巴耳末对当时已知的氢原子在可见光区的四条谱线, 即图 4.4-3 中 $\mathrm{H}_\alpha 、 \mathrm{H}_\beta 、 \mathrm{H}_\gamma 、 \mathrm{H}_\delta$ 谱线作了分析, 发现这些谱线的波长 $\lambda$ 满足一个简单的公式, 即 $$ \frac{1}{\lambda}=R_{\infty}\left(\frac{1}{2^2}-\frac{1}{n^2}\right) \quad n=3,4,5, \cdots $$ 式中 $R_{\infty}$ 叫作里德伯常量, 实验测得的值为 $R_{\infty}=1.10 \times 10^7 \mathrm{~m}^{-1}$ 。这个公式称为巴耳末公式, 式中的 $n$ 只能取整数, 它确定的这一组谱线称为巴耳末系。巴耳末公式以简洁的形式反映了氢原子的线状光谱的特征。 除了巴耳末系, 后来发现的氢光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式。
刷题
做题,是检验是否掌握数学的唯一真理
上一篇:
玻尔原子结构假说
下一篇:
普朗克黑体辐射理论
本文对您是否有用?
有用
(
0
)
无用
(
0
)
纠错
高考
考研
关于
赞助
公式
科数网是专业专业的数学网站。