切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
高中物理
第二章 力学
强化训练:动态平衡问题 平衡中的临界、极值问题
最后
更新:
2025-04-23 09:18
查看:
519
次
反馈
能力测评
会员8.2元/月
赞助
强化训练:动态平衡问题 平衡中的临界、极值问题
## 动态平衡问题 1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态. 2.做题流程  3.常用方法 (1)图解法 此法常用于定性分析三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况. (2)解析法 对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程或根据相似三角形、正弦定理,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. 1.一个力恒定,另一个力始终与恒定的力垂直,三力可构成直角三角形,可作不同状态下的直角三角形,分析力的大小变化,如图甲所示. 2.一力恒定,另一力与恒定的力不垂直但方向不变,作出不同状态下的矢量三角形,确定力大小的变化,在变化过程中恒力之外的两力垂直时,会有极值出现,如图乙所示.  `例` (多选)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A物体的半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分 别是  A.F1减小 B.F1增大 C.F2增大 D.F2减小 解: 以球 $B$ 为研究对象,受力分析如图所示,可得出 $F_1=G \tan \theta$ , $F_2=\frac{G}{\cos \theta}$ ,当 $A$ 向右移动少许后, $\theta$ 减小,则 $F_1$ 减小, $F_2$减小,故A、D正确.  > 一力恒定,另外两力方向一直变化,但两力的夹角不变,作出不同状态的矢量三角形,利用两力夹角不变,结合正弦定理列式求解,也可以作出动态圆,恒力为圆的一条弦,根据不同位置判断各力的大小变化. 基本矢量图,如图所示 {width=300px} `例` (多选)如图所示,在倾角为α的斜面上,放一质量为m的小球,小球和斜面及挡板间均无摩擦,当挡板绕O点逆时针缓慢地转向水平位置的过程中 A.斜面对球的支持力逐渐增大 B.斜面对球的支持力逐渐减小 C.挡板对小球的弹力先减小后增大 D.挡板对小球的弹力先增大后减小 {width=300px} 解: BC 对小球受力分析知,小球受到重力mg、斜面的支持力FN1和挡板的弹力FN2,如图,当挡板绕O点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,FN1和FN2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图, {width=200px} 由图看出,斜面对小球的支持力FN1逐渐减小,挡板对小球的弹力FN2先减小后增大,当FN1和FN2垂直时,弹力FN2最小,故选项B、C正确,A、D错误. ## 一力恒定,另两力方向均变化 1.一力恒定(如重力),其他二力的方向均变化,但二力分别与绳子、两物体重心连线方向等平行,即三力构成的矢量三角形与绳长、半径、高度等实际几何三角形相似,则对应边比值相等. 基本矢量图,如图所示 $$ \boxed { \frac{m g}{H}=\frac{F_{N}}{R}=\frac{F_{T}}{L} } $$ {width=350px} `例` 如图所示,质量分布均匀的细棒中心为O点,O1为光滑铰链,O2为光滑定滑轮,且O2在O1正上方,细绳跨过O2与O连接,水平外力F作用于细绳的一端.用FN表示铰链对杆的作用力,现在水平外力F作用下,θ从 缓慢减小到0的过程中,下列说法正确的是 A.F逐渐变小,FN大小不变 B.F逐渐变小,FN逐渐变大 C.F先变小再变大,FN逐渐变小 D.F先变小再变大,FN逐渐变大 {width=350px} 解:A 受力分析如图所示,力三角形与几何三角形 $\left(\triangle O_2 O O_1\right)$ 相似,则有 $\frac{G}{O_2 O_1}=\frac{F_{ N }}{O O_1}=\frac{F}{O O_2}$ ,因为 $O_2 O_1, ~ O O_1$ 长度不变,故 $F_{ N }$ 大小不变, $OO _2$ 长度变短,故 $F$ 变小,故A正确,B,C,D错误. `例` (多选)如图,柔
免费注册看余下 70%
非VIP会员每天5篇文章,开通VIP 无限制查看
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
试验:探究两个互成角度的力的合成规律
下一篇:
牛顿第一定律
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com