切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
高中物理
第三章 曲线运动
试验:探究向心力大小与半径、角速度、质量的关系
最后
更新:
2024-12-14 08:27
查看:
317
次
反馈
能力测评
会员8.2元/月
赞助
试验:探究向心力大小与半径、角速度、质量的关系
## 试验思路 1.实验思路 本实验探究向心力与多个物理量之间的关系,因而实验方法采用了控制变量法,如图所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动,此时小球向外挤压挡板,挡板对小球有一个向内(指向圆周运动的圆心)的弹力作为小球做匀速圆周运动的向心力,可以通过标尺上露出的红白相间等分标记,粗略计算出两球所需向心力的比值.  在实验过程中可以通过两个小球同时做圆周运动对照,分别分析下列情形: (1)在 质量、半径一定的情况下,探究向心力大小与角速度的关系. (2)在质量、角速度一定的情况下,探究向心力大小与半径的关系. (3)在半径、角速度 一定的情况下,探究向心力大小与质量的关系. 2.实验器材 向心力演示器、小球. 3.实验过程 (1)分别将两个质量相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同,即圆周运动半径相同.将皮带放置在适当位置使两转盘转动,记录不同角速度下的向心力大小(格数). (2)分别将两个质量 相等的小球放在实验仪器的长槽和短槽两个小槽中,将皮带放置在适当位置使两转盘转动角速度相等 ,小球到转轴(即圆心)距离不同,即圆周运动半径不等,记录不同半径的向心力大小(格数). (3)分别将两个质量不相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同,即圆周运动半径相等,将皮带放置在适当位置使两转盘转动角速度相等,记录不同质量下的向心力大小(格数). 4.数据处理 分别作出 Fn-ω^2 、Fn-r、Fn-m的图像,分析向心力大小与角速度、半径、质量之间的关系,并得出结论. 5.注意事项 摇动手柄时应缓慢加速,注意观察其中一个标尺的格数.达到预定格数时,即保持转速恒定,观察并记录其余读数. ## 例题 `例`用如图所示的实验装置来探究小球做圆周运动所需向心力的大小F与质量m、角速度ω和半径r之间的关系,转动手柄使长槽和短槽分别随塔轮匀速转动,槽内的球就做匀速圆周运动.横臂的挡板对球的压力提供了向心力,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒下降,从而露出标尺,标尺上的红白相间的等分格显示出两个小球所受向心力的比值.实验用球分为钢球和铝球,请回答相关问题:  (1)在某次实验中,某同学把两个质量相
免费注册看余下 70%
非VIP会员每天5篇文章,开通VIP 无限制查看
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
向心加速度
下一篇:
离心力与圆周运动的应用
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com