在线学习
重点科目
初中数学
高中数学
高等数学
线性代数
概率统计
高中物理
数学公式
主要科目
复变函数
离散数学
数学分析
实变函数
群论
数论
未整理科目
近世代数
数值分析
常微分方程
偏微分方程
大学物理
射影几何
微分几何
泛函分析
拓扑学
数学物理
趣味数学
科数网
题库
教材
高考区
考研区
VIP
科数网
题库
在线学习
高中数学
高等数学
线性代数
概率统计
高中物理
复变函数
离散数学
实变函数
数论
群论
你好
游客,
登录
注册
在线学习
高等数学
第七章 多元函数积分学
格林第一公式与第二公式
最后
更新:
2025-04-09 11:19
查看:
365
次
反馈
刷题
格林第一公式与第二公式
## 格林第一公式与第二公式 高斯定理 设空间闭区域 $\Omega$ 由分片光滑的闭曲面 $\Sigma$ 所围成, $\Sigma$的方向取外侧。函数 $P, Q, R$ 在 $\Omega$ 上有连续的一阶偏导数, 则: $$ \begin{gathered} \iiint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d x d y d z=\iint_{\Sigma} P d y d z+Q d z d x+R d x d y \\ =\iint_{\Sigma}[P \cos (n, x)+Q \cos (n, y)+R \cos (n, z)] d s \end{gathered} $$ 由高斯公式可得: $$ \begin{gathered} \iiint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d V=\iint_{\Gamma}[P \cos (n, x)+Q \cos (n, y)+R \cos (n, z)] d s \\ \text { 令 } P=u \frac{\partial v}{\partial x}, \quad Q=u \frac{\partial v}{\partial y}, R=u \frac{\partial v}{\partial z}, \text { 求偏导数可得: } \\ \frac{\partial P}{\partial x}=\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+u \frac{\partial^2 v}{\partial x^2} \quad \frac{\partial Q}{\partial y}=\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+u \frac{\partial^2 v}{\partial y^2} \quad \frac{\partial R}{\partial z}=\frac{\partial u}{\partial z} \frac{\partial v}{\partial z}+u \frac{\partial^2 v}{\partial z^2} \end{gathered} $$ 将求得的偏导数代入高斯公式可得: $$ \begin{gathered} \iiint_{\Omega}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+u \frac{\partial^2 v}{\partial x^2}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+u \frac{\partial^2 v}{\partial y^2}+\frac{\partial u}{\partial z} \frac{\partial v}{\partial z}+u \frac{\partial^2 v}{\partial z^2}\right) d V \\ =\iint_{\Gamma} u\left[\frac{\partial v}{\partial x} \cos (n, x)+\frac{\partial v}{\partial y} \cos (n, y)+\frac{\partial v}{\partial z} \cos (n, z)\right] d s \\ \iiint_{\Omega} u\left(\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}+\frac{\partial^2 v}{\partial z^2}\right) d V+\iiint_{\Omega}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+\frac{\partial u}{\partial z} \frac{\partial v}{\partial z}\right) d V \\ =\iint_{\Gamma} u\left[\frac{\partial v}{\partial x} \cos (n, x)+\frac{\partial v}{\partial y} \cos (n, y)+\frac{\partial v}{\partial z} \cos (n, z)\right] d s \end{gathered} $$ 因为 $\Delta v=\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}+\frac{\partial^2 v}{\partial z^2}$, 所以可得格林第一公式: $$ \iiint_{\Omega} u \Delta v d V+\iiint_{\Omega}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+\frac{\partial u}{\partial z} \frac{\partial v}{\partial z}\right) d V=\iint_{\Gamma} u \frac{\partial v}{\partial n} d s ...(1) $$ (1) 式称为第一格林公式。 令 $P=v \frac{\partial u}{\partial x}, Q=v \frac{\partial u}{\partial y}, R=v \frac{\partial u}{\partial z}$, 求偏导数可得: $$ \frac{\partial P}{\partial x}=\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}+v \frac{\partial^2 u}{\partial x^2} \quad \frac{\partial Q}{\partial y}=\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}+v \frac{\partial^2 u}{\partial y^2} \quad \frac{\partial R}{\partial z}=\frac{\partial v}{\partial z} \frac{\partial u}{\partial z}+v \frac{\partial^2 u}{\partial z^2} $$ 将求得的偏导数代入高斯公式可得: $$ \begin{gathered} \iiint_{\Omega}\left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}+v \frac{\partial^2 u}{\partial x^2}+\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}+v \frac{\partial^2 u}{\partial y^2}+\frac{\partial v}{\partial z} \frac{\partial u}{\partial z}+v \frac{\partial^2 u}{\partial z^2}\right) d V \\ =\iint_{\Gamma} v\left[\frac{\partial u}{\partial x} \cos (n, x)+\frac{\partial u}{\partial y} \cos (n, y)+\frac{\partial u}{\partial z} \cos (n, z)\right] d s \\ \iiint_{\Omega} v\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}\right) d V+\iiint_{\Omega}\left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial z} \frac{\partial u}{\partial z}\right) d V \\ =\iint_{\Gamma} v\left[\frac{\partial u}{\partial x} \cos (n, x)+\frac{\partial u}{\partial y} \cos (n, y)+\frac{\partial u}{\partial z} \cos (n, z)\right] d s \end{gathered} $$ 因为 $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}$, 所以可得格林第一公式: $$ \iiint_{\Omega} v \Delta u d V+\iiint_{\Omega}\left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial z} \frac{\partial u}{\partial z}\right) d V=\iint_{\Gamma} v \frac{\partial u}{\partial n} d s ...(2) $$ 由(1)-(2)式可得: $$ \begin{gathered} \iiint_{\Omega} u \Delta v d V+\iiint_{\Omega}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+\frac{\partial u}{\partial z} \frac{\partial v}{\partial z}\right) d V-\iiint_{\Omega} v \Delta u d V \\ -\iiint_{\Omega}\left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial z} \frac{\partial u}{\partial z}\right) d V=\iint_{\Gamma} u \frac{\partial v}{\partial n} d s-\iint_{\Gamma} v \frac{\partial u}{\partial n} d s \\ \iiint_{\Omega} u \Delta v d V-\iiint_{\Omega} v \Delta u d V=\iint_{\Gamma} u \frac{\partial v}{\partial n} d s-\iint_{\Gamma} v \frac{\partial u}{\partial n} d s \\ \iiint_{\Omega}(u \Delta v-v \Delta u) d V=\iint_{\Gamma}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) d s \end{gathered} ...(3) $$ (3)式称为格林第二公式。
刷题
做题,是检验是否掌握数学的唯一真理
上一篇:
曲线积分与路径无关的等价条件
下一篇:
理解:通量与散度
本文对您是否有用?
有用
(
0
)
无用
(
0
)
纠错
高考
考研
关于
赞助
公式
科数网是专业专业的数学网站。