科数网
首页
题库
试卷
学习
VIP
你好
游客,
登录
注册
在线学习
高等数学
第六章 多元函数微分学
多元复合函数求导举例 Part3
最后
更新:
2025-04-02 15:30
查看:
943
次
反馈
同步训练
多元复合函数求导举例 Part3
多元复合函数
## 多元复合函数求导举例 > 多元复合函数求导拿到试题后,首先就是画图,标注变量之间的关系,然后找到对应的路径,这在复杂的题目里,尤其有用。阅读本文前最好已经阅读了上一节内容 `例` 设 $z=f\left(\sin x, x^2-y^2\right) , f$ 具有一阶连续的偏导数,求 $\frac{\partial z}{\partial x} , \frac{\partial z}{\partial y}$. 解 设 $u=\sin x, v=x^2-y^2$ , 则函数 $z=f\left(\sin x, x^2-y^2\right)$ 是由函数 $z=f(u, v)$ , $u=\sin x, v=x^2-y^2$ 复合而成. 由函数的结构图  从图中可以看到 **$z$到$x$ 有两条路** 所以可得 $\quad \frac{\partial z}{\partial x}=\frac{\partial f}{\partial u} \frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{\partial f}{\partial v} \frac{\mathrm{d} v}{\mathrm{~d} x}=\cos x \cdot f_u+2 x f_v $. 而 **$z$到$y$有1条路** ,所以 $\frac{\partial z}{\partial y}=\frac{\partial f}{\partial v} \frac{\partial v}{\partial y}=-2 y f_v$ 注 有时,为表达简便起见,引入以下记号: $$ f_1^{\prime}(u, v)=f_u(u, v), \quad f_2^{\prime}(u, v)=f_v(u, v), $$ > **这里下标 1 表示对第一个变量求偏导数,下标 2 表示对第二个变量求偏导 数,利用这样的记号,上例的结果可以表示为** $$ \frac{\partial z}{\partial x}=\cos x \cdot f_1^{\prime}+2 x f_2^{\prime}, \quad \frac{\partial z}{\partial y}=-2 y f_2^{\prime} $$ 同理也可以引入 $f_{11}^{\prime \prime} 、 f_{12}^{\prime \prime} 、 f_{22}^{\prime \prime}$ 等记号 `例`(1) 设 $u=f(x+y+z, x y z)$ ,其中 $f$ 具有二阶偏导数,求 $\frac{\partial u}{\partial x} , \frac{\partial^2 u}{\partial x \partial z}$; (2)设 $u=f(x, x y, x y z)$ ,其中 $f$ 具有二阶连续偏导数,求 $\frac{\partial^2 u}{\partial x \partial y}$. 解 (1) $$ \begin{aligned} \frac{\partial u}{\partial x}=f_1^{\prime}+f_2^{\prime} y z, \frac{\partial^2 u}{\partial x \partial z} & =\frac{\partial}{\partial x}\left(f_1^{\prime}\right)+\frac{\partial}{\partial z}\left(f_2^{\prime} y z\right) \\ & =f_{11}^{\prime \prime}+f_{12}^{\prime \prime} x y+\left(f_{21}^{\prime \prime}+f_{22}^{\prime \prime} x y\right) y z+f_2^{\prime} y \end{aligned} $$ > 注 本题条件中并没有二阶偏导数连续,因此 $f_{12}^{\prime \prime}$ 与 $f_{21}^{\prime \prime}$ 末必相等,因此不要将 其合并. (2) $\frac{\partial u}{\partial x}=f_1^{\prime}+y f_2^{\prime}+y z f_3^{\prime}$, $$ \begin{aligned} \frac{\partial^2 u}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(f_1^{\prime}\right)+\frac{\partial}{\partial x}\left(y f_2^{\prime}\right)+\frac{\partial}{\partial x}\left(y z f_3^{\prime}\right) \\ & =x f_{12}^{\prime \prime}+x z f_{13}^{\prime \prime}+y\left(x f_{22}^{\prime \prime}+x z f_{23}^{\prime \prime}\right)+f_2^{\prime}+y z\left(x f_{32}^{\prime \prime}+x z f_{33}^{\prime \prime}\right)+z f_3^{\prime} \\ & =f_2^{\prime}+z f_3^{\prime}+x f_{12}^{\prime \prime}+x z f_{13}^{\prime \prime}+x y f_{22}^{\prime \prime}+2 x y z f_{23}^{\prime \prime}+x z f_{33}^{\prime \prime} . \end{aligned} $$ > 注 本题条件中有二阶偏导数连续,因此 $f_{23}^{\prime \prime}=f_{32}^{\prime \prime}$ , 因此需要将其合并. `例` 设函数 $u=f(x, y)$ 具有二阶连续偏导数,将下列表达式转换为极坐标的形式: (1) $\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2$; (2) $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}$. 解 (1) 直角坐标系与极坐标系的关系 : $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$ ,或 $\left\{\begin{array}{l}r=\sqrt{x^2+y^2} \\ \theta=\arctan \frac{y}{x}\end{array}\right.$ , $u=f(x, y)=f(r \cos \theta, r \sin \theta)=F(r, \theta)$, $$ \begin{aligned} \frac{\partial r}{\partial x}= & \frac{x}{\sqrt{x^2+y^2}}=\frac{x}{r}=\cos \theta, \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2} \cdot\left(-\frac{y}{x^2}\right)=-\frac{y}{x^2+y^2}=-\frac{x}{r^2}-\frac{\sin t}{r} \\ & \frac{\partial r}{\partial y}=\frac{y}{\sqrt{x^2+y^2}}=\frac{y}{r}=\sin \theta, \frac{\partial \theta}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^2} \cdot \frac{1}{x}=\frac{x}{x^2+y^2}=\frac{\cos }{r} \end{aligned} $$ $\frac{\partial r}{\partial x}=\cos \theta, \frac{\partial \theta}{\partial x}=-\frac{x}{r^2}-\frac{\sin \theta}{r}$ $$ \frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \cdot \frac{\partial \theta}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{x}{r}-\frac{\partial u}{\partial \theta} \cdot \frac{y}{r^2}=\frac{\partial u}{\partial r} \cos \theta-\frac{\partial u}{\partial \theta} \cdot \frac{\sin \theta}{r} $$ $$ \frac{\partial r}{\partial y}=\sin \theta, \frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r} $$ 因此平方相加得 $$ \begin{aligned} \left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2 & =\left(\frac{\partial u}{\partial r} \cos \theta-\frac{\partial u}{\partial \theta} \cdot \frac{\sin \theta}{r}\right)^2+\left(\frac{\partial u}{\partial r} \sin \theta+\frac{\partial u}{\partial \theta}
免费注册看余下 50%
非VIP会员每天15篇文章,开通VIP 无限制查看
上一篇:
复合求导链式法则 Part2
下一篇:
全微分形式的不变性
本文对您是否有用?
有用
(
1
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
题库下载
会议预约系统
数学公式
关于
科数网是专业专业的数学网站 版权所有 本站部分教程采用AI辅助生成,请学习时自行鉴别
如果页面无法显示请联系 18155261033 或 983506039@qq.com