科数网
首页
题库
试卷
学习
VIP
你好
游客,
登录
注册
在线学习
概率论与数理统计
第四篇 随机变量的数字特征
随机变量函数的数学期望
最后
更新:
2023-10-01 11:28
查看:
367
次
反馈
同步训练
随机变量函数的数学期望
定理1 (随机变量一元函数的期望公式) (1)设 $X$ 为离散型随机变量,其分布律为 $P\left(X=x_i\right)=p_i, i=1,2, \cdots$ 如果级数 $\sum_{i=1}^{\infty} g\left(x_i\right) p_i$ 绝对收敛,则 $X$ 的一元函数 $Y=g(X)$ 的数学期望为 $$ E[g(X)]=\sum_{i=1}^{\infty} g\left(x_i\right) p_i $$ (2)设 $X$ 为连续型随机变量,其密度函数为 $f(x)$ , 如果广义积分 $\int_{-\infty}^{+\infty} g(x) f(x) d x$ 绝对收剑, 则 $X$ 的一元函数 $Y=g(X)$ 的数学期望为 $$ \begin{gathered} E[g(X)]=\int_{-\infty}^{+\infty} g(x) f(x) d x \\ \end{gathered} $$  定理2 (随机变量二元函数的期望公式) (1)设 $(X, Y)$ 是二维离散型随机变量,其联合分布律为 $$ P\left(X=a_i, Y=b_j\right)=p_{i j} \quad i, j=1,2, \cdots $$ 如果级数 $\sum_i
免费注册看余下 50%
非VIP会员每天15篇文章,开通VIP 无限制查看
上一篇:
数学期望的定义
下一篇:
数学期望的性质
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
题库下载
会议预约系统
数学公式
关于
科数网是专业专业的数学网站 版权所有 本站部分教程采用AI辅助生成,请学习时自行鉴别
如果页面无法显示请联系 18155261033 或 983506039@qq.com