切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
高中数学
第一章:集合与逻辑
命题与量词
最后
更新:
2025-04-14 18:50
查看:
909
次
反馈
能力测评
会员8.2元/月
赞助
命题与量词
## 命题 凡可决定其真假的语句就叫做命题。 ①雪是白的.(真) ②对顶角相等.(真) ③$2+2=5$. (假) ④若$x>y$, 则$\frac{x+2y}{3}>\frac{x+y}{2}$.(假) 这些语句都是命题.从上面这些命题中我们可以看到,命题不一定为数学所独有,如1就不是数学命题,另外我们还看到一个命题是可以判断真假的,有的容易判断如1、2、3.有的就较难判断一些,如4是个假命题,但一眼不容易看出来,实际上如果设$x=1$, $y=0,\;(x>y)$那么 $\frac{1+2 \times 0}{3}\not>\frac{1+0}{2}$.这就说明4是个假命题了.所谓“判断真假”是对事物的本质说的,并不要求现在就要,“决定”,也不要求最近的将来便可决定.例如: 别的星球上有生物. 凡大于4的偶数都是两个奇质数之和(这就是著名的哥德巴赫猜想). 这些语句的真假不但现在不能决定,在最近的将来也未必“可决定”,但是我们认为从事物的本质来说,它们本身是有真假可言的,所以应该承认它们都是命题. 数学命题,经常使用“如果……,那么……”,“若……,则…….”的叙述形式,如前面提到的4便是这一类形式的 命题.这类命题写成一般形式就是: > 若$\alpha$, 则$\beta$ 或 如果$\alpha$, 那么$\beta$. 下面我们仔细的分析它的结构和逻辑关系. 命题“若$\alpha$, 则$\beta$”是否正确,就要看$\alpha$、$\beta$之间是否具有推出关系$\alpha\Rightarrow\beta$了.也就是说,如果$\alpha$、$\beta$之间具有$\alpha\Rightarrow\beta$的关系,则“若$\alpha$, 则$\beta$”是真命题(即正确的命题),由此可见“$\alpha\Rightarrow\beta$”与“若$\alpha$, 则$\beta$”是真命题是同一关系的两种不同说法. 在命题“若$\alpha$, 则$\beta$”中,我们把$\alpha$叫做命题的**条件**,$\beta$叫做命题的**结论**. 把“若$\alpha$, 则$\beta$”中的$\beta$作为条件,$\alpha$作为结论,就得到另一个命题:若$\beta$, 则$\alpha$. 这个命题叫做“若$\alpha$, 则$\beta$”的**逆命题**. 把“若$\alpha$, 则$\beta$”中的$\alpha$的反性质:非$\alpha$, $\beta$的反性质:非$\beta$, 分别作为条件和结论,又得到一个新命题:若$\bar\alpha$, 则$\bar\beta$, 这个命题叫做“若$\alpha$, 则$\beta$
免费注册看余下 70%
非VIP会员每天5篇文章,开通VIP 无限制查看
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
集合的交集、并集和补集
下一篇:
充分条件与必要条件
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com