科数网
首页
题库
试卷
学习
VIP
你好
游客,
登录
注册
在线学习
线性代数
第二篇 矩阵
雅可比矩阵及其行列式的几何意义
最后
更新:
2024-09-01 11:13
查看:
424
次
反馈
同步训练
雅可比矩阵及其行列式的几何意义
## 雅可比矩阵及其行列式的几何意义 因为雅可比矩阵如此重要且有趣, 雅可比矩阵是线性代数和微积分的纽带, 是把非线性问题转换为线性问题的有力工具之一。 ### 雅可比矩阵及其行列式的几何意义 有一个函数方程组由 $n$ 个函数组成, 每个函数有 $n$ 个自变量 $x_1, x_2, \cdots, x_n$ : $$ \left\{\begin{array}{c} y_1=f_1\left(x_1, x_2, \cdots, x_n\right) \\ y_2=f_2\left(x_1, x_2, \cdots, x_n\right) \\ \quad \vdots \\ y_n=f_n\left(x_1, x_2, \cdots, x_n\right) \end{array}\right. $$ 这个函数组有两个意义可以解释: 一个解释它是一个映射, 点 $\left(x_1, x_2, \cdots, x_n\right)$ 被映射成 $\left(y_1, y_2, \cdots, y_n\right)$; 另外的一个解释就是坐标变换的意思, 如果你把这个函数组代到一个以 $y_1, y_2, \cdots, y_n$ 为自变量的某方程中, 即相当于把某方程的原坐标系 $\left\{o, y_1, y_2, \cdots, y_n\right\}$ 被替换成 $\left\{o, x_1, x_2, \cdots, x_n\right\}$ 坐标系。这两个解释的本质是一回事, 是同一件事情从不同角度的看法。坐标系不动, 一个点被变换到另一个点, 这等价于说点不动, 一个坐标系被代换到另一个坐标系。 下面从其坐标变换的解释角度来分析。 一般情况下, 这个函数方程组不是线性方程组, 它的图形多是高维曲线、曲面类的。稍详细一点说, 每一个函数是个超维曲面, $n$ 个超维曲面组合在一起交割成超维曲线。不过猛地看起来蛮像线性方程组的样子, 心里于是就有了把它弄成线性方程组的冲动: 弄成线性的可以使用矩阵、行列式啊什么的, 可以和线性变换联系起来, 多有几何意义啊。 咋弄成线性的? 直接改写成矩阵形式吗, 恐怕不行。嘿, 不是有微积分嘛, 微分就是把曲的弄成直的, 积分就是把直的弄成弯的。好, 对多元的非线性可微方程组进行偏微分: $$ \left\{\begin{aligned} \mathrm{d} y_1 & =\frac{\partial f_1}{\partial x_1} \mathrm{~d} x_1+\frac{\partial f_1}{\partial x_2} \mathrm{~d} x_2+\cdots+\frac{\partial f_1}{\partial x_n} \mathrm{~d} x_n \\ \mathrm{~d} y_2 & =\frac{\partial f_2}{\partial x_1} \mathrm{~d} x_1+\frac{\partial f_2}{\partial x_2} \mathrm{~d} x_2+\cdots+\frac{\partial f_2}{\partial x_n} \mathrm{~d} x_n \\ & \vdots \\ \mathrm{d} y_n & =\frac{\partial f_n}{\partial x_1} \mathrm{~d} x_1+\frac{\partial f_n}{\partial x_2} \mathrm{~d} x_2+\cdots+\frac{\partial f_n}{\partial x_n} \mathrm{~d} x_n \end{aligned}\right. $$ 到了这一步是不是和线性方程组有点相似了?! 这个过程就是激动人心之化曲为直的过程。几何意义上化每个超曲面为超平面 (函数 $\mathrm{d} y_i=\frac{\partial f_i}{\partial x_1} \mathrm{~d} x_1+\frac{\partial f_i}{\partial x_2} \mathrm{~d} x_2+\cdots+\frac{\partial f_i}{\partial x_n} \mathrm{~d} x_n$ 是超维切平面方程,因此实际上就是化为超维切平面), $n$ 个超平面组合在一起就是超维切线方程, 因此就这样化曲线为直线了。代数意义上就把高次函数方程组化成了齐次线性方程组。好, 那就把它写成矩阵的形式吧: $$ \left(\begin{array}{c} \mathrm{d} y_1 \\ \mathrm{~d} y_2 \\ \vdots \\ \mathrm{d} y_n \end{array}\right)=\left[\begin{array}{cccc} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{array}\right]\left(\begin{array}{c} \mathrm{d} x_1 \\ \mathrm{~d} x_2 \\ \vdots \\ \mathrm{d} x_n^{\prime} \end{array}\right) $$ 当里个当, 主角雅可比矩阵出现了, 就是式(5-17)向量方程中间的大方块。当然雅可比行列式就是雅可比矩阵的行列式。册庸置疑, 雅可比矩阵和行列式具有前面讲过的矩阵和行列式的所有意义。除此之外, 还有两点特殊的地方: 一是向量的元素如 $\mathrm{d} x_1 、 \mathrm{~d} y_1$ 等是微分, 它们是一些极小量, 而且是极小的向量; $\mathrm{d} x_i$ 是在 $x_i$坐标轴上的微分向量, $\mathrm{d} y_i$ 是在 $y_i$ 坐标轴上的微分向量。 二是雅可比矩阵里面的元素如 $\frac{\partial f_1}{\partial x_1} 、 \frac{\partial f_n}{\partial x_n}$ 等一般不是常数, 而是变量, 这和前面讲的矩阵不同。 恰恰是这两点, 并结合矩阵的坐标系变换的意义, 我们终于揭开了雅可比矩阵和行列式的最终几何意义: 雅可比矩阵把一个超平面的仿射坐标系变换成了一个超曲面坐标系 ; 雅可比行列式就是曲面坐标系下单位微元和仿射坐标系下单位微元面积的比值。 不太明白, 再换一种说法: 雅可比矩阵把一个空间里的一个平面坐标系 ( 基 ) 变换成了无数个极小平面坐标系 ( 基 );无数个极小平面就是曲面的切平面; 雅可比行列式就是切平面上每个坐标系下极小单位元和原坐标系下极小单位元面积的比值。 泛泛而谈让人昏昏入睡, 我们找个二维的具体例子看看吧。 ## 雅可比矩阵在二重积分中的应用例子 例 5.7 计算二重积分 $\iint_D(y / x)^2 \mathrm{~d} x \mathrm{~d} y$, 式中 $D$ 为由曲线 $y=x, y=3 x, x y=1, x y=5$ 所围得第一象限部分的区域。 常规的解法是在默认的直角坐标系 $\{0, x, y, z\}$ 中进行积分, 其积分区域必须分为 $D=D_1+D_2+D_3$ 三个区域 (见图 5-60)。先进行 $\mathrm{d} y$ 积分, 然后再进行 $\mathrm{d} x$ 积分。  量和因变量, 得到坐标变换关系为 $\left\{\begin{array}{l}x=\sqrt{v / u} \\ y=\sqrt{u v}\end{array}\right.$, 这个变换函数组是非线性的, 无法写成矩阵和向量的形式, 对其进行偏微分, 因此把变换写成雅可比矩阵形式为 其雅可比行列式为 雅可比行列式的绝对值问题 在这里我们没有取雅可比行列式的绝对值带入积分中, 因为这里自然地认为积分区域是有定向的, 雅可比行列式 $|J|=-\frac{1}{2 u}$ 看起来为负值, 是因为微分向量 $\mathrm{d} u, \mathrm{~d} v$ 叉积方向和 $\mathrm{d} k \mathrm{~d} y$ 的叉积方向相反。但在本科生阶段, 因为没有引进外微分的概
免费注册看余下 50%
非VIP会员每天15篇文章,开通VIP 无限制查看
上一篇:
初等矩阵与逆矩阵的应用
下一篇:
平移矩阵,旋转矩阵,缩放矩阵,线性变换,仿射变换,齐次坐标
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
题库下载
会议预约系统
数学公式
关于
科数网是专业专业的数学网站 版权所有 本站部分教程采用AI辅助生成,请学习时自行鉴别
如果页面无法显示请联系 18155261033 或 983506039@qq.com