切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
线性代数
第六篇 特征值与矩阵相似
矩阵相似的几何意义
最后
更新:
2025-09-21 11:01
查看:
252
次
反馈
能力测评
会员8.2元/月
赞助
矩阵相似的几何意义
## 矩阵相似的几何意义 相似矩阵的定义是:**如果有可逆方阵 $\boldsymbol{P}$, 使得方阵 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 满足 $\boldsymbol{A}=\boldsymbol{P B } \boldsymbol{P}^{-1}$, 那么矩阵 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 被互称为相似矩阵**。 多么简洁、深刻的定义啊。深刻得让人看了 $n$ 遍都不明白怎么俩矩阵就相似了? 哪里相似了。矩阵相似通俗理解就是给一头小猪拍的不同角度的照片。 ## 什么是相似矩阵 前面讲过, 线性变换用矩阵表示是与空间的一组基相联系的。一般情况下, **一个线性变换就是一个描述**, 比如平面旋转 $\pi / 4$ 弧度的变换, 比如四维空间对于一个平面镜像的变换等。那么要把这些线性变换转化为矩阵, 就要根据情况选择某一个坐标系及其单位等。选择坐标系及其单位就是确定某一个基。所以一个线性变换在不同的基下的表示矩阵是不相同的, 下面的定义及定理揭示了同一个线性变换在不同基下的矩阵之间的相互关系。 相似方阵 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 满足 $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{B} \boldsymbol{P}^{-1}$, 那么矩阵 $\boldsymbol{A}$ 变换到矩阵 $\boldsymbol{B}$ 的过程, 被称为矩阵的**相似变换**。 实际上,相似矩阵 $A$ 和 $B$ 是同一个线性变换(在同一线性空间中 ) 在两个不同基下的表示矩阵, 而可逆矩阵 $P$ 就是**基变换矩阵**。 同一个线性变换在不同基下的矩阵是相似矩阵; 反之, 两个矩阵 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 如果是相似矩阵,并且 $\boldsymbol{A}$ 是一个线性变换在一个基下的矩阵, 那么矩阵 $\boldsymbol{B}$ 必然是这个线性变换在另一个基下的矩阵。 呵呵, 前面的定义、定理绕来绕去的, 其实核心一可话就是: > 相似矩阵 $A$ 和 $B$ 是同一个线性变换在两个不同基下的表示矩阵。 这也是相似矩阵的几何意义。 **通俗解释** 打个比方说, 就像两个观众看一场演出, 台上演员的某一演出动作就是一个变换, 是实实在在的、唯物主义的不以谁看为转移的一个变换。但是两个观众张三和李四的位置不一样, 从不同角度观看, 这就是取的坐标不同, 基不同了。显然, 基不同, 看到的演员的动作也不同了。扮演猴子的演员在舞台中间从左往右翻跟头, 假设演员功夫好, 翻的是标准的圆周运动。左前方的张三看起来猴子的 “跟头” 变换是顺时针椭圆周运动, 此运动表示为矩阵 $A$; 在后方一角落的李四 (李四是剧团工作人员, 在帷幕后面闲看) 看起来猴子的 “跟头” 变换是逆时针椭圆周运动, 此运动表示为矩阵 $\boldsymbol{B}$ 。两个人看到的运动应是差不多的, 很相似, 因此 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 称为相似矩阵 (注意: 不止这两人, 所有的观众看到的运动都是相似矩阵)。 还有第三个人王二麻子很明智, 知道两个人看的运动有些走样了。就到观众席的正中央正襟危坐观看, 呵! 标准的圆周运动。王二麻子告诉我们: 在一大堆相似矩阵中, 正面的矩阵看起来不走样, 最爽 (矩阵有用啊, 证明了为何前排中间的位置票价最贵啊)。 什么是基呢? 这里只要把基看成是线性空间里的**坐标系**就可以了。注意是坐标系, 不是坐标值, 这两者可是一个 “对立矛盾统一体”。这样一来, “选定一组基”就是说在线性空间里选定一个坐标系。就这意思。 好, 最后我们把矩阵的定义完善如下: **“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中, 只要我们选定一组基, 那么对于任何一个线性变换, 都能够用一个确定的矩阵来加以描述。”** 理解这句话的关键在于把 “线性变换”与 “线性变换的一个描述” 区别开。一个是那个对象, 一个是对那个对象的表述。就好像我们熟悉的面向对象编程中, 一个对象可以有多个引用, 每个引用可以叫不同的名字, 但都是指的同一个对象。如果还不形象, 那就干脆来个很通俗的类比。 比如有一头宠物小萌猪, 你打算给它拍照片, 只要你给照相机选定一个镜头位置, 那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述, 但
免费注册 查看余下70%
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
矩阵相似
下一篇:
矩阵与对角形 λ 相似的判定
本文对您是否有用?
有用
(
0
)
无用
(
0
)
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com