切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
离散数学
第一章 数理逻辑
范式
最后
更新:
2025-11-09 11:14
查看:
74
次
反馈
能力测评
会员8.2元/月
赞助
范式
## 范式 每种数字标准形都能提供很多信息,如代数式的因式分解可判断代数式根的情况.命题公式在等值演算下也有标准的形式,称为**范式**.范式有两种:析取范式和合取范式.公式的范式能表达真值表所能提供的一切信息,并能解决一些实际应用问题。 **定义1.12**(1)命题变项及其否定统称作**文字**。 (2)仅由有限个文字构成的析取式称作**简单析取式**. (3)仅由有限个文字构成的合取式称作**简单合取式**. 例如 $p, \neg q$ 等为 1 个文字构成简单析取式;$p \vee \neg p, \neg p \vee q$ 等为 2 个文字构成的简单析取式;$\neg p \vee \neg q \vee r, p \vee \neg q \vee r$ 等为 3 个文字构成的简单析取式。 $\neg p, q$ 等为 1 个文字构成的简单合取式;$\neg p \wedge p, p \wedge \neg q$ 等为 2 个文字构成的简单合取式;$p \wedge q \wedge \neg r, \neg p \wedge p \wedge q$等为 3 个文字构成的简单合取式.应该注意: 1 个文字既是简单析取式,又是简单合取式. **定理1.1** (1)一个简单析取式是重言式当且仅当它同时含有某个命题变项及其否定式. (2)一个简单合取式是矛盾式当且仅当它同时含有某个命题变项及其否定式. 例如 $p \vee \neg p, p \vee \neg p \vee r$ 都是重言式.$\neg p \vee q, \neg p \vee \neg q \vee r$ 都不是重言式.$p \wedge \neg p, p \wedge \neg p \wedge r$ 都是矛盾式.$\neg p \wedge q, \neg p \wedge \neg q \wedge r$ 都不是矛盾式. 证明 留给读者思考完成。 **定义1.13**(1)由有限个简单合取式构成的析取式称为**析取范式**. (2)由有限个简单析取式构成的合取式称为**合取范式**. (3)析取范式与合取范式统称为**范式**. 设 $A_i(i=1,2, \cdots, s)$ 为简单合取式,则 $A \Leftrightarrow A_1 \vee A_2 \vee \cdots \vee A_s$ 为析取范式.例如,$A_1 \Leftrightarrow p \wedge \neg q, A_2 \Leftrightarrow \neg q \wedge \neg r, A_3 \Leftrightarrow p$ ,则由 $A_1, A_2, A_3$ 构成的析取范式为 $A \Leftrightarrow A_1 \vee A_2 \vee A_3 \Leftrightarrow(p \wedge \neg q) \vee(\neg q \wedge \neg r) \vee p$. 类似地,设 $A_i^{\prime}(i=1,2, \cdots, t)$ 为简单析取式,则 $A \Leftrightarrow A_1^{\prime} \wedge A_2^{\prime} \wedge \cdots \wedge A_t^{\prime}$ 为合取范式.例如,取 $A_1^{\prime} \Leftrightarrow p \vee q \vee r, A_2^{\prime} \Leftrig
免费注册看余下 70%
非VIP会员每天5篇文章,开通VIP 无限制查看
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
利用等值演算简化逻辑推理
下一篇:
等值式
本文对您是否有用?
有用
(
0
)
无用
(
0
)
更多
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com