切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
量子物理
第三篇 一维定态实例
薛定谔方程应用-一维周期势场
最后
更新:
2025-11-11 14:09
查看:
25
次
反馈
能力测评
会员8.2元/月
赞助
薛定谔方程应用-一维周期势场
7.一维周期势场 一维周期势场 $V(x)$ 具有如下特征: $$ V(x+n a)=V(x), \quad n=0, \pm 1, \pm 2, \cdots $$ 在周期势场中运动的粒子,它的定态是非束缚态,其能谱具有新的特征——能带结构,是一种兼具连续谱和分立谱某些特征的能谱.它对理解固体的导电性能、固体发光等十分重要。 1)弗洛凯(Floquet)定理 设粒子能量本征方程的本征值为 $E$ ,两个线性无关的解为 $u_1(x)$ 和 $u_2(x)$ ,彼此正交归一。对于由式(3.36)描述的两端无限延伸的周期势场,$x$ 与 $x+a$ 两处应该是等价的。于是,$u_1(x+a)$ 和 $u_2(x+a)$ 也是能量本征函数,本征值为 $E$ ,因此有 $$ \left\{\begin{array}{l} u_1(x+a)=C_{11} u_1(x)+C_{12} u_2(x) \\ u_2(x+a)=C_{21} u_1(x)+C_{22} u_2(x) \end{array}\right. $$ 可以证明:$u_1(x)$ 和 $u_2(x)$ 进行适当线性叠加后,总可以找到 $\psi_1(x) 、 \psi_2(x)$ 两个解.具有如下特征: $$ \psi(x+a)=\lambda \psi(x), \quad \lambda \text { 为常数 } $$ 证 构造叠加态 $$ \psi(x)=A u_1(x)+B u_2(x) $$ 其中 $A 、 B$ 为待定常数.将上式代人式(3.37)和式(3.38)得 $$ \begin{aligned} \psi(x+a) & =A u_1(x+a)+B u_2(x+a) \\ & =\left(A C_{11}+B C_{21}\right) u_1(x)+\left(A C_{12}+B C_{22}\right) u_2(x) \\ & =\lambda \psi(x)=\lambda\left[A u_1(x)+B u_2(x)\right] \end{aligned} $$ 利用 $u_1(x)$ 和 $u_2(x)$ 的正交归一性,由上式得 $$ \begin{aligned} & A C_{11}+B C_{21}=\lambda A \\ & A C_{12}+B C_{22}=\lambda B \end{aligned} $$ 上式是关于 $A 、 B$ 的线性齐次方程组,它有非平庸解的充要条件为 $$ \left|\begin{array}{cc} C_{11}-\lambda & C_{21} \\ C_{12} & C_{22}-\lambda \end{array}\right|=0 $$ 可求得关于 $\lambda$ 的两个根 $\lambda_1, \lambda_2$ .由此可求得 $A$ 和 $B$ 的两组解,即得两个波函数 $\psi_1(x)$和 $\psi_2(x)$ ,它们满足式(3.38). 推论 $\quad \psi(x+n a)=\lambda^n \psi(x), n=0, \pm 1, \pm 2, \cdots$ 且必有 $|\lambda|=1$. 根据本章 3.1 节中的定理 3.4,若 $\psi_1(x)$ 和 $\psi_2(x)$ 均为能量本征方程属于同一能量 $E$ 的解,则 $\psi_1 \psi_2^{\prime}-\psi_2 \psi_1^{\prime}=C$ ,其中,$C$ 是与 $x$ 无关的常数.根据式(3.38),有 $$ \begin{aligned} & \psi_1(x+a) \psi_2^{\prime}(x+a)-\psi_2(x+a) \psi_1^{\prime}(x+a) \\ = & \lambda_1 \lambda_2\left[\psi_1(x) \psi_2^{\prime}(x)-\psi_2(x) \psi_1^{\prime}(x)\right]=C \end{aligned} $$ 所以要求 $\lambda_1 \lambda_2=1$ ,或 $\lambda_2=\lambda_1^*$ .不妨取 $\lambda_1=\mathrm{e}^{\mathrm{i} K a}, \lambda_2=\mathrm{e}^{-\mathrm{i} K a}, K$ 为实数,考虑到复指数函数的周期为 $2 \pi$ ,不妨把 $K a$ 限制在下列范围 $$ -\pi \leqslant K a \leqslant \pi \text { 或 }-\frac{\pi}{a} \leqslant K \leqslant \frac{\pi}{a} $$ 得弗洛凯定理 $$ \psi(x+a)=\mathrm{e}^{\mathrm{i} K a} \psi(x), \quad K \text { 为实数 } $$ 2)布洛赫(Bloch)定理 周期势场式(3.36)中,粒子的能量本征波函数 $\psi(x)$ 总满足 $$ \psi(x)=\mathrm{e}^{\mathrm{i} K x} \varphi_K(x), \quad \text { 且 } \varphi_K(x+a)=\varphi_K(x) $$ 式中,$K$ 为实数,亦称为布洛赫波数. 证 利用弗洛凯定理(3.39),代人式(3.40)得 $$ \begin{aligned} & \text { 左边 }=\mathrm{e}^{\mathrm{i} K(x+a)} \varphi_K(x+a)=\mathrm{e}^{\mathrm{i} K a} \mathrm{e}^{\mathrm{i} K x} \varphi_K(x+a) \\ & \text { 右边 }=\mathrm{e}^{\
免费注册 查看余下70%
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
薛定谔方程应用-一维谐振子
下一篇:
导体、绝缘体和半导体的能带结构
本文对您是否有用?
有用
(
0
)
无用
(
0
)
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com