切换科目
重点科目
主要科目
次要科目
科数网
首页
刷题
学习
VIP会员
赞助
组卷
集合
教材
VIP
写作
游客,
登录
注册
在线学习
近世代数
第五章 多项式环及整环的性质
整环的商域
最后
更新:
2025-12-24 17:11
查看:
7
次
反馈
能力测评
会员8.2元/月
赞助
整环的商域
5.7 整环的商域 利用等价关系从整数出发可以作出所有的有理数,有理数域是包含整数环 $\mathbf{Z}$的最小的域.从整环 $R$ 出发也可以类似作出一个商域(分式域),它也是包含 $R$ 的最小的域。 定义 5.7.1 设 $R$ 为一整环.如果存在域 $F$ 使得 (1)$R$ 是 $F$ 的一个子环; (2)$F$ 的每个元素 $\alpha$ 都可以表成 $R$ 的两个元素的商,即有 $\alpha=\frac{b}{c}, c \neq 0$ .则称域 $F$ 为整环 $R$ 的商域(分式域). 类似于有理数的构造方法,可以如下构造商域. 定理 5.7.1 每个整环 $R$ 都有一个商域 $F=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in R\right.$ 且 $\left.a \neq 0\right\}$ . 证明 设 $R$ 是一个整环,$R^*=R-\{0\}$ ,则 $R^*$ 为一个乘法么半群.作笛卡儿积 $T=R \times R^*=\left\{(a, b) \mid a \in R, b \in R^*\right\}$ 。在 $T$ 上定义一个关系 $\sim$ : $$ (a, b) \sim(c, d) \text { 当且仅当 } a d=b c \text {. } $$ $\sim$ 显然是反身的和对称的,而且也是传递的.事实上,若设 $$ (a, b) \sim(c, d) \text {, 且 }(c, d) \sim(e, f) \text {, } $$ 则有 $a d=b c, c f=d e$ 且有 $a d f=b c f=b d e$ ,因为 $d \neq 0$ 且 $R$ 为整环,消去 $d$ 得 $a f=b e$ .所以 $(a, b) \sim(e, f)$ . 作商集 $F=T / \sim$ ,含 $(a, b)$ 的等价类记作 $\frac{a}{b}$ .于是 $\frac{a}{b}=\frac{c}{d}$ 当且仅当 $a d= b c$ .在 $F$ 上定义加法和乘法运算如下: $$ \begin{gathered} \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \\ \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \end{gathered} $$ 可以验证,上述定义与等价类代表元的取法无关. 事实上,设 $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}, \frac{c}{d}=\frac{c^{\prime}}{d^{\prime}}$ ,则有 $a b^{\prime}=a^{\prime} b, c d^{\prime}=c^{\prime} d$ ,于是 $$ \frac{a^{\prime}}{b^{\prime}}+\frac{c^{\prime}}{d^{\prime}}=\frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}=\frac{a d^{\prime}+b
免费注册 查看余下70%
《高等数学》难点解析
高数教程
泰勒公式
切线与法线
切平面与法平面
驻点·拐点·极值点·零点
间断点
渐进线
瑕积分
欧拉方程
伯努利方程
Abel 收敛定理
偏导数的几何意义
偏导数的几何意义
梯度
数量场与向量场
多元函数极值
拉格朗日算子
通量与散度
环流量与旋度
格林公式
高斯公式
斯托克斯公式
三大公式比较
傅里叶级数
极坐标微元
点法式方程
变上限定积分
X型计算面积
Y型计算面积
微分的意义
渐近线
间断点
y''+py'+qy=f(x)方程
高斯
黎曼
傅里叶变换(复数)
拉普拉斯变换(复数)
高等数学测评
函数与极限
一元函数微分学
一元函数积分学
微分方程
空间向量与代数
多元微分学
多元积分学
无穷级数
《线性代数》难点解析
线代教程
近世代数对数学的整体思考
线性的意义
矩阵乘法(列视角)
矩阵乘法(行视角)
矩阵左乘
矩阵右乘
逆矩阵求解方程组
阶梯形矩阵的求法
方程组解的判定
四阶行列式的计算
线性变换的意义
线性空间
向量组的等价
线性空间的几何意义
基础解系的求法
施密特正交化
特征值与特征向量的意义
矩阵相似的几何意义
矩阵可对角化的理解
秩的意义(向量版)
秩的意义(方程版)
二次型的意义
线性代数测评
行列式
矩阵
向量空间
《概率论与数理统计》难点解析
概率教程
置信区间与上a分位数
概率中的“取”与“放”
贝叶斯公式
全概率公式
泊松分布
指数分布
伽玛分布
二维密度图的意义
卷积的意义
相关系数的意义
k阶矩是与矩母函数
卡方分布的作用
单正态区间估计理解
假设检验理解
切比雪夫不等式
中心极限定理
概率统计测评
事件与概率
一维随机变量与事件
多维随机变量与事件
随机变量的数字特征
大数定律与中心极限定理
统计量与抽样分布
参数估计
假设检验
上一篇:
唯一分解整环上的多项式环
下一篇:
环在编码和密码中的应用
本文对您是否有用?
有用
(
0
)
无用
(
0
)
学习首页
数学试卷
同步训练
投稿
会议预约系统
数学公式
关于
Mathhub
赞助我们
科数网是专业专业的数学网站 版权所有
本站部分教程采用AI制作,请读者自行判别内容是否一定准确
如果页面无法显示请联系 18155261033 或 983506039@qq.com